IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36504-1.html
   My bibliography  Save this article

Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120

Author

Listed:
  • Ryo Nagao

    (Okayama University
    Shizuoka University)

  • Koji Kato

    (Okayama University
    Japan Synchrotron Radiation Research Institute (JASRI))

  • Tasuku Hamaguchi

    (RIKEN SPring-8 Center
    Tohoku University)

  • Yoshifumi Ueno

    (Kobe University
    Tokyo University of Science)

  • Naoki Tsuboshita

    (Okayama University)

  • Shota Shimizu

    (Okayama University)

  • Miyu Furutani

    (Kobe University)

  • Shigeki Ehira

    (Tokyo Metropolitan University)

  • Yoshiki Nakajima

    (Okayama University)

  • Keisuke Kawakami

    (RIKEN SPring-8 Center)

  • Takehiro Suzuki

    (Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science)

  • Naoshi Dohmae

    (Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science)

  • Seiji Akimoto

    (Kobe University)

  • Koji Yonekura

    (RIKEN SPring-8 Center
    Tohoku University
    Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program)

  • Jian-Ren Shen

    (Okayama University)

Abstract

Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions. The cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, their binding property and functional roles in PSI are still missing. We analyzed a cryo-electron microscopy structure of a PSI-IsiA supercomplex isolated from Anabaena grown under an iron-deficient condition. The PSI-IsiA structure contains six IsiA subunits associated with the PsaA side of a PSI core monomer. Three of the six IsiA subunits were identified as IsiA1 and IsiA2. The PSI-IsiA structure lacks a PsaL subunit; instead, a C-terminal domain of IsiA2 occupies the position of PsaL, which inhibits the oligomerization of PSI, leading to the formation of a PSI monomer. Furthermore, excitation-energy transfer from IsiAs to PSI appeared with a time constant of 55 ps. These findings provide insights into both the molecular assembly of the Anabaena IsiA family and the functional roles of IsiAs.

Suggested Citation

  • Ryo Nagao & Koji Kato & Tasuku Hamaguchi & Yoshifumi Ueno & Naoki Tsuboshita & Shota Shimizu & Miyu Furutani & Shigeki Ehira & Yoshiki Nakajima & Keisuke Kawakami & Takehiro Suzuki & Naoshi Dohmae & S, 2023. "Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36504-1
    DOI: 10.1038/s41467-023-36504-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36504-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36504-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasufumi Umena & Keisuke Kawakami & Jian-Ren Shen & Nobuo Kamiya, 2011. "Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å," Nature, Nature, vol. 473(7345), pages 55-60, May.
    2. Koji Kato & Ryo Nagao & Tian-Yi Jiang & Yoshifumi Ueno & Makio Yokono & Siu Kit Chan & Mai Watanabe & Masahiko Ikeuchi & Jian-Ren Shen & Seiji Akimoto & Naoyuki Miyazaki & Fusamichi Akita, 2019. "Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. E. J. Boekema & A. Hifney & A. E. Yakushevska & M. Piotrowski & W. Keegstra & S. Berry & K.-P. Michel & E. K. Pistorius & J. Kruip, 2001. "A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria," Nature, Nature, vol. 412(6848), pages 745-748, August.
    5. Patrick Jordan & Petra Fromme & Horst Tobias Witt & Olaf Klukas & Wolfram Saenger & Norbert Krauß, 2001. "Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution," Nature, Nature, vol. 411(6840), pages 909-917, June.
    6. Thomas S. Bibby & Jon Nield & James Barber, 2001. "Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria," Nature, Nature, vol. 412(6848), pages 743-745, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyu Zhao & Irene Vercellino & Jana Knoppová & Roman Sobotka & James W. Murray & Peter J. Nixon & Leonid A. Sazanov & Josef Komenda, 2023. "The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Koji Kato & Ryo Nagao & Yoshifumi Ueno & Makio Yokono & Takehiro Suzuki & Tian-Yi Jiang & Naoshi Dohmae & Fusamichi Akita & Seiji Akimoto & Naoyuki Miyazaki & Jian-Ren Shen, 2022. "Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Shishang Dong & Guoqiang Huang & Changhui Wang & Jiajia Wang & Sen-Fang Sui & Xiaochun Qin, 2022. "Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Joseph T Snow & Despo Polyviou & Paul Skipp & Nathan A M Chrismas & Andrew Hitchcock & Richard Geider & C Mark Moore & Thomas S Bibby, 2015. "Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-24, November.
    5. Futing Zhang & Zuozhu Wen & Shanlin Wang & Weiyi Tang & Ya-Wei Luo & Sven A. Kranz & Haizheng Hong & Dalin Shi, 2022. "Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Shivam Yadav & Martin Centola & Mathilda Glaesmann & Denys Pogoryelov & Roman Ladig & Mike Heilemann & L. C. Rai & Özkan Yildiz & Enrico Schleiff, 2022. "Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Ryan Puskar & Chloe Truong & Kyle Swain & Saborni Chowdhury & Ka-Yi Chan & Shan Li & Kai-Wen Cheng & Ting Yu Wang & Yu-Ping Poh & Yuval Mazor & Haijun Liu & Tsui-Fen Chou & Brent L. Nannenga & Po-Lin , 2022. "Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Rana Hussein & Mohamed Ibrahim & Asmit Bhowmick & Philipp S. Simon & Ruchira Chatterjee & Louise Lassalle & Margaret Doyle & Isabel Bogacz & In-Sik Kim & Mun Hon Cheah & Sheraz Gul & Casper Lichtenber, 2021. "Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Dvir Harris & Hila Toporik & Gabriela S. Schlau-Cohen & Yuval Mazor, 2023. "Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Lin Zhang & Junxiang Ruan & Fudan Gao & Qiang Xin & Li-Ping Che & Lujuan Cai & Zekun Liu & Mengmeng Kong & Jean-David Rochaix & Hualing Mi & Lianwei Peng, 2024. "Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    15. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Xuelei Pan & Mengyu Yan & Qian Liu & Xunbiao Zhou & Xiaobin Liao & Congli Sun & Jiexin Zhu & Callum McAleese & Pierre Couture & Matthew K. Sharpe & Richard Smith & Nianhua Peng & Jonathan England & Sh, 2024. "Electric-field-assisted proton coupling enhanced oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Jianping Li & Yan Li & Akiko Koide & Huihui Kuang & Victor J. Torres & Shohei Koide & Da-Neng Wang & Nathaniel J. Traaseth, 2024. "Proton-coupled transport mechanism of the efflux pump NorA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Nermin A. El Semary, 2022. "Iron-Marine Algal Interactions and Impacts: Decreasing Global Warming by Increasing Algal Biomass," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    19. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36504-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.