IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29303-7.html
   My bibliography  Save this article

Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa

Author

Listed:
  • Koji Kato

    (Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University)

  • Ryo Nagao

    (Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University)

  • Yoshifumi Ueno

    (Graduate School of Science, Kobe University)

  • Makio Yokono

    (Institute of Low Temperature Science, Hokkaido University)

  • Takehiro Suzuki

    (Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science)

  • Tian-Yi Jiang

    (Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University)

  • Naoshi Dohmae

    (Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science)

  • Fusamichi Akita

    (Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University)

  • Seiji Akimoto

    (Graduate School of Science, Kobe University)

  • Naoyuki Miyazaki

    (Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba)

  • Jian-Ren Shen

    (Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University)

Abstract

Photosystem I (PSI) is one of the two photosystems functioning in light-energy harvesting, transfer, and electron transfer in photosynthesis. However, the oligomerization state of PSI is variable among photosynthetic organisms. We present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from the glaucophyte alga Cyanophora paradoxa, which reveals differences with PSI from other organisms in subunit composition and organization. The PSI tetramer is organized in a dimer of dimers with a C2 symmetry. Unlike cyanobacterial PSI tetramers, two of the four monomers are rotated around 90°, resulting in a completely different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and excitation-energy transfer in the Cyanophora PSI tetramer, suggesting that the Cyanophora PSI could represent a turning point in the evolution of PSI from prokaryotes to eukaryotes.

Suggested Citation

  • Koji Kato & Ryo Nagao & Yoshifumi Ueno & Makio Yokono & Takehiro Suzuki & Tian-Yi Jiang & Naoshi Dohmae & Fusamichi Akita & Seiji Akimoto & Naoyuki Miyazaki & Jian-Ren Shen, 2022. "Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29303-7
    DOI: 10.1038/s41467-022-29303-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29303-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29303-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasufumi Umena & Keisuke Kawakami & Jian-Ren Shen & Nobuo Kamiya, 2011. "Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å," Nature, Nature, vol. 473(7345), pages 55-60, May.
    2. Ryo Nagao & Koji Kato & Kentaro Ifuku & Takehiro Suzuki & Minoru Kumazawa & Ikuo Uchiyama & Yasuhiro Kashino & Naoshi Dohmae & Seiji Akimoto & Jian-Ren Shen & Naoyuki Miyazaki & Fusamichi Akita, 2020. "Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Koji Kato & Ryo Nagao & Tian-Yi Jiang & Yoshifumi Ueno & Makio Yokono & Siu Kit Chan & Mai Watanabe & Masahiko Ikeuchi & Jian-Ren Shen & Seiji Akimoto & Naoyuki Miyazaki & Fusamichi Akita, 2019. "Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Caizhe Xu & Xiong Pi & Yawen Huang & Guangye Han & Xiaobo Chen & Xiaochun Qin & Guoqiang Huang & Songhao Zhao & Yanyan Yang & Tingyun Kuang & Wenda Wang & Sen-Fang Sui & Jian-Ren Shen, 2020. "Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Koji Kato & Toshiyuki Shinoda & Ryo Nagao & Seiji Akimoto & Takehiro Suzuki & Naoshi Dohmae & Min Chen & Suleyman I. Allakhverdiev & Jian-Ren Shen & Fusamichi Akita & Naoyuki Miyazaki & Tatsuya Tomo, 2020. "Structural basis for the adaptation and function of chlorophyll f in photosystem I," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Patrick Jordan & Petra Fromme & Horst Tobias Witt & Olaf Klukas & Wolfram Saenger & Norbert Krauß, 2001. "Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution," Nature, Nature, vol. 411(6840), pages 909-917, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyu Zhao & Irene Vercellino & Jana Knoppová & Roman Sobotka & James W. Murray & Peter J. Nixon & Leonid A. Sazanov & Josef Komenda, 2023. "The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ryo Nagao & Koji Kato & Tasuku Hamaguchi & Yoshifumi Ueno & Naoki Tsuboshita & Shota Shimizu & Miyu Furutani & Shigeki Ehira & Yoshiki Nakajima & Keisuke Kawakami & Takehiro Suzuki & Naoshi Dohmae & S, 2023. "Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Songhao Zhao & Lili Shen & Xiaoyi Li & Qiushuang Tao & Zhenhua Li & Caizhe Xu & Cuicui Zhou & Yanyan Yang & Min Sang & Guangye Han & Long-Jiang Yu & Tingyun Kuang & Jian-Ren Shen & Wenda Wang, 2023. "Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Shishang Dong & Guoqiang Huang & Changhui Wang & Jiajia Wang & Sen-Fang Sui & Xiaochun Qin, 2022. "Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Long-Sheng Zhao & Ning Wang & Kang Li & Chun-Yang Li & Jian-Ping Guo & Fei-Yu He & Gui-Ming Liu & Xiu-Lan Chen & Jun Gao & Lu-Ning Liu & Yu-Zhong Zhang, 2024. "Architecture of symbiotic dinoflagellate photosystem I–light-harvesting supercomplex in Symbiodinium," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Futing Zhang & Zuozhu Wen & Shanlin Wang & Weiyi Tang & Ya-Wei Luo & Sven A. Kranz & Haizheng Hong & Dalin Shi, 2022. "Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Yu-Zhong Zhang & Kang Li & Bing-Yue Qin & Jian-Ping Guo & Quan-Bao Zhang & Dian-Li Zhao & Xiu-Lan Chen & Jun Gao & Lu-Ning Liu & Long-Sheng Zhao, 2024. "Structure of cryptophyte photosystem II–light-harvesting antennae supercomplex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Shivam Yadav & Martin Centola & Mathilda Glaesmann & Denys Pogoryelov & Roman Ladig & Mike Heilemann & L. C. Rai & Özkan Yildiz & Enrico Schleiff, 2022. "Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Ryan Puskar & Chloe Truong & Kyle Swain & Saborni Chowdhury & Ka-Yi Chan & Shan Li & Kai-Wen Cheng & Ting Yu Wang & Yu-Ping Poh & Yuval Mazor & Haijun Liu & Tsui-Fen Chou & Brent L. Nannenga & Po-Lin , 2022. "Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Rana Hussein & Mohamed Ibrahim & Asmit Bhowmick & Philipp S. Simon & Ruchira Chatterjee & Louise Lassalle & Margaret Doyle & Isabel Bogacz & In-Sik Kim & Mun Hon Cheah & Sheraz Gul & Casper Lichtenber, 2021. "Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Lin Zhang & Junxiang Ruan & Fudan Gao & Qiang Xin & Li-Ping Che & Lujuan Cai & Zekun Liu & Mengmeng Kong & Jean-David Rochaix & Hualing Mi & Lianwei Peng, 2024. "Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Xuelei Pan & Mengyu Yan & Qian Liu & Xunbiao Zhou & Xiaobin Liao & Congli Sun & Jiexin Zhu & Callum McAleese & Pierre Couture & Matthew K. Sharpe & Richard Smith & Nianhua Peng & Jonathan England & Sh, 2024. "Electric-field-assisted proton coupling enhanced oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Christopher J. Gisriel & Tirupathi Malavath & Tianyin Qiu & Jan Paul Menzel & Victor S. Batista & Gary W. Brudvig & Lisa M. Utschig, 2024. "Structure of a biohybrid photosystem I-platinum nanoparticle solar fuel catalyst," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Shangkun Li & Zeyi Zhang & Walker R. Marks & Xinan Huang & Hang Chen & Dragos C. Stoian & Rolf Erni & Carlos A. Triana & Greta R. Patzke, 2024. "{Co4O4} Cubanes in a conducting polymer matrix as bio-inspired molecular oxygen evolution catalysts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Witold Jan Wardal & Kamila Mazur & Jan Barwicki & Mikhail Tseyko, 2024. "Fundamental Barriers to Green Energy Production in Selected EU Countries," Energies, MDPI, vol. 17(15), pages 1-14, July.
    17. Xing Zhang & Yanan Xiao & Xin You & Shan Sun & Sen-Fang Sui, 2024. "In situ structural determination of cyanobacterial phycobilisome–PSII supercomplex by STAgSPA strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yusuke Yoneda & Eric A. Arsenault & Shiun-Jr Yang & Kaydren Orcutt & Masakazu Iwai & Graham R. Fleming, 2022. "The initial charge separation step in oxygenic photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    20. Joseph T Snow & Despo Polyviou & Paul Skipp & Nathan A M Chrismas & Andrew Hitchcock & Richard Geider & C Mark Moore & Thomas S Bibby, 2015. "Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-24, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29303-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.