IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51438-y.html
   My bibliography  Save this article

A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography

Author

Listed:
  • Simon Wiedemann

    (Technical University of Munich)

  • Reinhard Heckel

    (Technical University of Munich)

Abstract

Cryogenic electron tomography is a technique for imaging biological samples in 3D. A microscope collects a series of 2D projections of the sample, and the goal is to reconstruct the 3D density of the sample called the tomogram. Reconstruction is difficult as the 2D projections are noisy and can not be recorded from all directions, resulting in a missing wedge of information. Tomograms conventionally reconstructed with filtered back-projection suffer from noise and strong artefacts due to the missing wedge. Here, we propose a deep-learning approach for simultaneous denoising and missing wedge reconstruction called DeepDeWedge. The algorithm requires no ground truth data and is based on fitting a neural network to the 2D projections using a self-supervised loss. DeepDeWedge is simpler than current state-of-the-art approaches for denoising and missing wedge reconstruction, performs competitively and produces more denoised tomograms with higher overall contrast.

Suggested Citation

  • Simon Wiedemann & Reinhard Heckel, 2024. "A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51438-y
    DOI: 10.1038/s41467-024-51438-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51438-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51438-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Haonan Zhang & Yan Li & Yanan Liu & Dongyu Li & Lin Wang & Kai Song & Keyan Bao & Ping Zhu, 2023. "A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haonan Zhang & Yan Li & Yanan Liu & Dongyu Li & Lin Wang & Kai Song & Keyan Bao & Ping Zhu, 2023. "A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Tim Schulte & Antonio Chaves-Sanjuan & Valentina Speranzini & Kevin Sicking & Melissa Milazzo & Giulia Mazzini & Paola Rognoni & Serena Caminito & Paolo Milani & Chiara Marabelli & Alessandro Corbelli, 2024. "Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Xueming Meng & Cong Xu & Jiawei Li & Benhua Qiu & Jiajun Luo & Qin Hong & Yujie Tong & Chuyu Fang & Yanyan Feng & Rui Ma & Xiangyi Shi & Cheng Lin & Chen Pan & Xueliang Zhu & Xiumin Yan & Yao Cong, 2024. "Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Bryan S. Sibert & Joseph Y. Kim & Jie E. Yang & Zunlong Ke & Christopher C. Stobart & Martin L. Moore & Elizabeth R. Wright, 2024. "Assembly of respiratory syncytial virus matrix protein lattice and its coordination with fusion glycoprotein trimers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yaejin Yun & Hyeongseop Jeong & Thibaut Laboute & Kirill A. Martemyanov & Hyung Ho Lee, 2024. "Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Conny Leistner & Martin Wilkinson & Ailidh Burgess & Megan Lovatt & Stanley Goodbody & Yong Xu & Susan Deuchars & Sheena E. Radford & Neil A. Ranson & René A. W. Frank, 2023. "The in-tissue molecular architecture of β-amyloid pathology in the mammalian brain," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Liming Zheng & Jie Xu & Weihua Wang & Xiaoyin Gao & Chao Zhao & Weijun Guo & Luzhao Sun & Hang Cheng & Fanhao Meng & Buhang Chen & Weiyu Sun & Xia Jia & Xiong Zhou & Kai Wu & Zhongfan Liu & Feng Ding , 2024. "Self-assembled superstructure alleviates air-water interface effect in cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Jianping Li & Yan Li & Akiko Koide & Huihui Kuang & Victor J. Torres & Shohei Koide & Da-Neng Wang & Nathaniel J. Traaseth, 2024. "Proton-coupled transport mechanism of the efflux pump NorA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Leishu Lin & Jiayuan Dong & Shun Xu & Jinman Xiao & Cong Yu & Fengfeng Niu & Zhiyi Wei, 2024. "Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Felix J. Metzner & Simon J. Wenzl & Michael Kugler & Stefan Krebs & Karl-Peter Hopfner & Katja Lammens, 2022. "Mechanistic understanding of human SLFN11," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Yitang Zhang & Maofei Chen & Xudong Chen & Minghui Zhang & Jian Yin & Zi Yang & Xin Gao & Sensen Zhang & Maojun Yang, 2024. "Molecular architecture of the mammalian 2-oxoglutarate dehydrogenase complex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51438-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.