IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36383-6.html
   My bibliography  Save this article

Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data

Author

Listed:
  • Md Tauhidul Islam

    (Stanford University)

  • Lei Xing

    (Stanford University)

Abstract

Remarkable advances in single cell genomics have presented unique challenges and opportunities for interrogating a wealth of biomedical inquiries. High dimensional genomic data are inherently complex because of intertwined relationships among the genes. Existing methods, including emerging deep learning-based approaches, do not consider the underlying biological characteristics during data processing, which greatly compromises the performance of data analysis and hinders the maximal utilization of state-of-the-art genomic techniques. In this work, we develop an entropy-based cartography strategy to contrive the high dimensional gene expression data into a configured image format, referred to as genomap, with explicit integration of the genomic interactions. This unique cartography casts the gene-gene interactions into the spatial configuration of genomaps and enables us to extract the deep genomic interaction features and discover underlying discriminative patterns of the data. We show that, for a wide variety of applications (cell clustering and recognition, gene signature extraction, single cell data integration, cellular trajectory analysis, dimensionality reduction, and visualization), the proposed approach drastically improves the accuracies of data analyses as compared to the state-of-the-art techniques.

Suggested Citation

  • Md Tauhidul Islam & Lei Xing, 2023. "Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36383-6
    DOI: 10.1038/s41467-023-36383-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36383-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36383-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. David Ouyang & Bryan He & Amirata Ghorbani & Neal Yuan & Joseph Ebinger & Curtis P. Langlotz & Paul A. Heidenreich & Robert A. Harrington & David H. Liang & Euan A. Ashley & James Y. Zou, 2020. "Video-based AI for beat-to-beat assessment of cardiac function," Nature, Nature, vol. 580(7802), pages 252-256, April.
    3. Bo Zhu & Jeremiah Z. Liu & Stephen F. Cauley & Bruce R. Rosen & Matthew S. Rosen, 2018. "Image reconstruction by domain-transform manifold learning," Nature, Nature, vol. 555(7697), pages 487-492, March.
    4. Chen Cao & Laurence A. Lemaire & Wei Wang & Peter H. Yoon & Yoolim A. Choi & Lance R. Parsons & John C. Matese & Wei Wang & Michael Levine & Kai Chen, 2019. "Comprehensive single-cell transcriptome lineages of a proto-vertebrate," Nature, Nature, vol. 571(7765), pages 349-354, July.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Omid Bazgir & Ruibo Zhang & Saugato Rahman Dhruba & Raziur Rahman & Souparno Ghosh & Ranadip Pal, 2020. "Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    7. Velina Kozareva & Caroline Martin & Tomas Osorno & Stephanie Rudolph & Chong Guo & Charles Vanderburg & Naeem Nadaf & Aviv Regev & Wade G. Regehr & Evan Macosko, 2021. "A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types," Nature, Nature, vol. 598(7879), pages 214-219, October.
    8. Roser Vento-Tormo & Mirjana Efremova & Rachel A. Botting & Margherita Y. Turco & Miquel Vento-Tormo & Kerstin B. Meyer & Jong-Eun Park & Emily Stephenson & Krzysztof Polański & Angela Goncalves & Lucy, 2018. "Single-cell reconstruction of the early maternal–fetal interface in humans," Nature, Nature, vol. 563(7731), pages 347-353, November.
    9. Xuesen Wu & Li Jin & Momiao Xiong, 2009. "Mutual Information for Testing Gene-Environment Interaction," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-12, February.
    10. Richard R Stein & Debora S Marks & Chris Sander, 2015. "Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroyasu Abe & Hiroshi Yadohisa, 2019. "Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 825-853, December.
    2. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Mohammadamin Edrisi & Xiru Huang & Huw A. Ogilvie & Luay Nakhleh, 2023. "Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    5. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    6. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    7. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    8. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    9. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    10. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    12. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    14. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    15. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    16. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    17. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    18. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    19. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    20. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36383-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.