IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7802d10.1038_s41586-020-2145-8.html
   My bibliography  Save this article

Video-based AI for beat-to-beat assessment of cardiac function

Author

Listed:
  • David Ouyang

    (Stanford University)

  • Bryan He

    (Stanford University)

  • Amirata Ghorbani

    (Stanford University)

  • Neal Yuan

    (Cedars-Sinai Medical Center)

  • Joseph Ebinger

    (Cedars-Sinai Medical Center)

  • Curtis P. Langlotz

    (Stanford University
    Stanford University)

  • Paul A. Heidenreich

    (Stanford University)

  • Robert A. Harrington

    (Stanford University)

  • David H. Liang

    (Stanford University
    Stanford University)

  • Euan A. Ashley

    (Stanford University
    Stanford University)

  • James Y. Zou

    (Stanford University
    Stanford University
    Stanford University)

Abstract

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm—EchoNet-Dynamic—that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.

Suggested Citation

  • David Ouyang & Bryan He & Amirata Ghorbani & Neal Yuan & Joseph Ebinger & Curtis P. Langlotz & Paul A. Heidenreich & Robert A. Harrington & David H. Liang & Euan A. Ashley & James Y. Zou, 2020. "Video-based AI for beat-to-beat assessment of cardiac function," Nature, Nature, vol. 580(7802), pages 252-256, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2145-8
    DOI: 10.1038/s41586-020-2145-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2145-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2145-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Tauhidul Islam & Lei Xing, 2023. "Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Jasper Tromp & David Bauer & Brian L. Claggett & Matthew Frost & Mathias Bøtcher Iversen & Narayana Prasad & Mark C. Petrie & Martin G. Larson & Justin A. Ezekowitz & Scott D. Solomon, 2022. "A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jun Ma & Yuting He & Feifei Li & Lin Han & Chenyu You & Bo Wang, 2024. "Segment anything in medical images," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2145-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.