IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i3p767-778.html
   My bibliography  Save this article

GAP: A graphical environment for matrix visualization and cluster analysis

Author

Listed:
  • Wu, Han-Ming
  • Tien, Yin-Jing
  • Chen, Chun-houh

Abstract

GAP is a Java-designed exploratory data analysis (EDA) software for matrix visualization (MV) and clustering of high-dimensional data sets. It provides direct visual perception for exploring structures of a given data matrix and its corresponding proximity matrices, for variables and subjects. Various matrix permutation algorithms and clustering methods with validation indices are implemented for extracting embedded information. GAP has a friendly graphical user interface for easy handling of data and proximity matrices. It is more powerful and effective than conventional graphical methods when dimension reduction techniques fail or when data is of ordinal, binary, and nominal type.

Suggested Citation

  • Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:767-778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00434-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hahsler, Michael & Hornik, Kurt & Buchta, Christian, 2008. "Getting Things in Order: An Introduction to the R Package seriation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i03).
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Friendly M., 2002. "Corrgrams: Exploratory Displays for Correlation Matrices," The American Statistician, American Statistical Association, vol. 56, pages 316-324, November.
    4. Chavent, Marie & Lechevallier, Yves & Briant, Olivier, 2007. "DIVCLUS-T: A monothetic divisive hierarchical clustering method," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 687-701, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    2. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Liu, Kailiang & Xu, Zhitong & Chen, Chun-houh & Nakano, Junji & Honda, Keisuke, 2023. "Article’s scientific prestige: Measuring the impact of individual articles in the web of science," Journal of Informetrics, Elsevier, vol. 17(1).
    3. Bohdan B Khomtchouk & James R Hennessy & Claes Wahlestedt, 2017. "shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-9, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    2. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    3. Hahsler, Michael, 2017. "An experimental comparison of seriation methods for one-mode two-way data," European Journal of Operational Research, Elsevier, vol. 257(1), pages 133-143.
    4. Eric C. Chi & Genevera I. Allen & Richard G. Baraniuk, 2017. "Convex biclustering," Biometrics, The International Biometric Society, vol. 73(1), pages 10-19, March.
    5. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    6. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    7. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    8. Maciej Jagódka & Małgorzata Snarska, 2021. "The State of Human Capital and Innovativeness of Polish Voivodships in 2004–2018," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    9. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    10. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    12. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    13. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    14. Anders Alexandersson, 2004. "Graphing confidence ellipses: An update of ellip for Stata 8," Stata Journal, StataCorp LP, vol. 4(3), pages 242-256, September.
    15. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    16. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    17. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    18. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    19. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    20. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:767-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.