IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36301-w.html
   My bibliography  Save this article

Coherent consolidation of trillions of nucleations for mono-atom step-level flat surfaces

Author

Listed:
  • Taewoo Ha

    (Sungkyunkwan University)

  • Yu-Seong Seo

    (Sungkyunkwan University)

  • Teun-Teun Kim

    (University of Ulsan)

  • Bipin Lamichhane

    (Mississippi State University)

  • Young-Hoon Kim

    (Sungkyunkwan University)

  • Su Jae Kim

    (Pusan National University)

  • Yousil Lee

    (Pusan National University)

  • Jong Chan Kim

    (Ulsan National Institute of Science and Engineering)

  • Sang Eon Park

    (Pusan National University)

  • Kyung Ik Sim

    (Sungkyunkwan University
    Yonsei University)

  • Jae Hoon Kim

    (Yonsei University)

  • Yong In Kim

    (Sungkyunkwan University)

  • Seon Je Kim

    (Sungkyunkwan University)

  • Hu Young Jeong

    (Ulsan National Institute of Science and Engineering
    Ulsan National Institute of Science and Technology)

  • Young Hee Lee

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Seong-Gon Kim

    (Mississippi State University)

  • Young-Min Kim

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Jungseek Hwang

    (Sungkyunkwan University)

  • Se-Young Jeong

    (Pusan National University
    Pusan National University)

Abstract

Constructing a mono-atom step-level ultra-flat material surface is challenging, especially for thin films, because it is prohibitively difficult for trillions of clusters to coherently merge. Even though a rough metal surface, as well as the scattering of carriers at grain boundaries, limits electron transport and obscures their intrinsic properties, the importance of the flat surface has not been emphasised sufficiently. In this study, we describe in detail the initial growth of copper thin films required for mono-atom step-level flat surfaces (MSFSs). Deposition using atomic sputtering epitaxy leads to the coherent merging of trillions of islands into a coplanar layer, eventually forming an MSFS, for which the key factor is suggested to be the individual deposition of single atoms. Theoretical calculations support that single sputtered atoms ensure the formation of highly aligned nanodroplets and help them to merge into a coplanar layer. The realisation of the ultra-flat surfaces is expected to greatly assist efforts to improve quantum behaviour by increasing the coherency of electrons.

Suggested Citation

  • Taewoo Ha & Yu-Seong Seo & Teun-Teun Kim & Bipin Lamichhane & Young-Hoon Kim & Su Jae Kim & Yousil Lee & Jong Chan Kim & Sang Eon Park & Kyung Ik Sim & Jae Hoon Kim & Yong In Kim & Seon Je Kim & Hu Yo, 2023. "Coherent consolidation of trillions of nucleations for mono-atom step-level flat surfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36301-w
    DOI: 10.1038/s41467-023-36301-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36301-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36301-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Wang & Xiaozhi Xu & Leining Zhang & Ruixi Qiao & Muhong Wu & Zhichang Wang & Shuai Zhang & Jing Liang & Zhihong Zhang & Zhibin Zhang & Wang Chen & Xuedong Xie & Junyu Zong & Yuwei Shan & Yi Guo & M, 2019. "Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper," Nature, Nature, vol. 570(7759), pages 91-95, June.
    2. Yan Wang & Jong Chan Kim & Ryan J. Wu & Jenny Martinez & Xiuju Song & Jieun Yang & Fang Zhao & Andre Mkhoyan & Hu Young Jeong & Manish Chhowalla, 2019. "Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors," Nature, Nature, vol. 568(7750), pages 70-74, April.
    3. Su Jae Kim & Yong In Kim & Bipin Lamichhane & Young-Hoon Kim & Yousil Lee & Chae Ryong Cho & Miyeon Cheon & Jong Chan Kim & Hu Young Jeong & Taewoo Ha & Jungdae Kim & Young Hee Lee & Seong-Gon Kim & Y, 2022. "Flat-surface-assisted and self-regulated oxidation resistance of Cu(111)," Nature, Nature, vol. 603(7901), pages 434-438, March.
    4. Muhong Wu & Zhibin Zhang & Xiaozhi Xu & Zhihong Zhang & Yunrui Duan & Jichen Dong & Ruixi Qiao & Sifan You & Li Wang & Jiajie Qi & Dingxin Zou & Nianze Shang & Yubo Yang & Hui Li & Lan Zhu & Junliang , 2020. "Seeded growth of large single-crystal copper foils with high-index facets," Nature, Nature, vol. 581(7809), pages 406-410, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xin Li & Guilin Wu & Leining Zhang & Deping Huang & Yunqing Li & Ruiqi Zhang & Meng Li & Lin Zhu & Jing Guo & Tianlin Huang & Jun Shen & Xingzhan Wei & Ka Man Yu & Jichen Dong & Michael S. Altman & Ro, 2022. "Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    7. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Su-Beom Song & Sangho Yoon & So Young Kim & Sera Yang & Seung-Young Seo & Soonyoung Cha & Hyeon-Woo Jeong & Kenji Watanabe & Takashi Taniguchi & Gil-Ho Lee & Jun Sung Kim & Moon-Ho Jo & Jonghwan Kim, 2021. "Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Fankai Zeng & Ran Wang & Wenya Wei & Zuo Feng & Quanlin Guo & Yunlong Ren & Guoliang Cui & Dingxin Zou & Zhensheng Zhang & Song Liu & Kehai Liu & Ying Fu & Jinzong Kou & Li Wang & Xu Zhou & Zhilie Tan, 2023. "Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Weiqing Xue & Xinyan Liu & Chunxiao Liu & Xinyan Zhang & Jiawei Li & Zhengwu Yang & Peixin Cui & Hong-Jie Peng & Qiu Jiang & Hongliang Li & Pengping Xu & Tingting Zheng & Chuan Xia & Jie Zeng, 2023. "Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Di Zhang & Peiyun Yi & Xinmin Lai & Linfa Peng & Hao Li, 2024. "Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Xiangbin Cai & Zefei Wu & Xu Han & Yong Chen & Shuigang Xu & Jiangxiazi Lin & Tianyi Han & Pingge He & Xuemeng Feng & Liheng An & Run Shi & Jingwei Wang & Zhehan Ying & Yuan Cai & Mengyuan Hua & Junwe, 2022. "Bridging the gap between atomically thin semiconductors and metal leads," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Peiming Zheng & Wenya Wei & Zhihua Liang & Biao Qin & Jinpeng Tian & Jinhuan Wang & Ruixi Qiao & Yunlong Ren & Junting Chen & Chen Huang & Xu Zhou & Guangyu Zhang & Zhilie Tang & Dapeng Yu & Feng Ding, 2023. "Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36301-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.