IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35348-5.html
   My bibliography  Save this article

Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis

Author

Listed:
  • Kei-ichiro Arimoto

    (University of California San Diego)

  • Sayuri Miyauchi

    (University of California San Diego)

  • Ty D. Troutman

    (University of California San Diego)

  • Yue Zhang

    (University of California San Diego)

  • Mengdan Liu

    (University of California San Diego)

  • Samuel A. Stoner

    (University of California San Diego)

  • Amanda G. Davis

    (University of California San Diego)

  • Jun-Bao Fan

    (University of California San Diego)

  • Yi-Jou Huang

    (University of California San Diego)

  • Ming Yan

    (University of California San Diego)

  • Christopher K. Glass

    (University of California San Diego
    University of California San Diego)

  • Dong-Er Zhang

    (University of California San Diego
    University of California San Diego)

Abstract

While immunotherapy has emerged as a breakthrough cancer therapy, it is only effective in some patients, indicating the need of alternative therapeutic strategies. Induction of cancer immunogenic cell death (ICD) is one promising way to elicit potent adaptive immune responses against tumor-associated antigens. Type I interferon (IFN) is well known to play important roles in different aspects of immune responses, including modulating ICD in anti-tumor action. However, how to expand IFN effect in promoting ICD responses has not been addressed. Here we show that depletion of ubiquitin specific protease 18 (USP18), a negative regulator of IFN signaling, selectively induces cancer cell ICD. Lower USP18 expression correlates with better survival across human selected cancer types and delays cancer progression in mouse models. Mechanistically, nuclear USP18 controls the enhancer landscape of cancer cells and diminishes STAT2-mediated transcription complex binding to IFN-responsive elements. Consequently, USP18 suppression not only enhances expression of canonical IFN-stimulated genes (ISGs), but also activates the expression of a set of atypical ISGs and NF-κB target genes, including genes such as Polo like kinase 2 (PLK2), that induce cancer pyroptosis. These findings may support the use of targeting USP18 as a potential cancer immunotherapy.

Suggested Citation

  • Kei-ichiro Arimoto & Sayuri Miyauchi & Ty D. Troutman & Yue Zhang & Mengdan Liu & Samuel A. Stoner & Amanda G. Davis & Jun-Bao Fan & Yi-Jou Huang & Ming Yan & Christopher K. Glass & Dong-Er Zhang, 2023. "Expansion of interferon inducible gene pool via USP18 inhibition promotes cancer cell pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35348-5
    DOI: 10.1038/s41467-022-35348-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35348-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35348-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianqin Zhang & Dusan Bogunovic & Béatrice Payelle-Brogard & Véronique Francois-Newton & Scott D. Speer & Chao Yuan & Stefano Volpi & Zhi Li & Ozden Sanal & Davood Mansouri & Ilhan Tezcan & Gillian I., 2015. "Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation," Nature, Nature, vol. 517(7532), pages 89-93, January.
    2. Xianqin Zhang & Dusan Bogunovic & Béatrice Payelle-Brogard & Véronique Francois-Newton & Scott D. Speer & Chao Yuan & Stefano Volpi & Zhi Li & Ozden Sanal & Davood Mansouri & Ilhan Tezcan & Gillian I., 2015. "Erratum: Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation," Nature, Nature, vol. 519(7543), pages 378-378, March.
    3. Yupeng Wang & Wenqing Gao & Xuyan Shi & Jingjin Ding & Wang Liu & Huabin He & Kun Wang & Feng Shao, 2017. "Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin," Nature, Nature, vol. 547(7661), pages 99-103, July.
    4. David E. Muench & Andre Olsson & Kyle Ferchen & Giang Pham & Rachel A. Serafin & Somchai Chutipongtanate & Pankaj Dwivedi & Baobao Song & Stuart Hay & Kashish Chetal & Lisa R. Trump-Durbin & Jayati Mo, 2020. "Mouse models of neutropenia reveal progenitor-stage-specific defects," Nature, Nature, vol. 582(7810), pages 109-114, June.
    5. Corey Rogers & Teresa Fernandes-Alnemri & Lindsey Mayes & Diana Alnemri & Gino Cingolani & Emad S. Alnemri, 2017. "Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Yuanyuan Wei & Beidi Lan & Tao Zheng & Lin Yang & Xiaoxia Zhang & Lele Cheng & Gulinigaer Tuerhongjiang & Zuyi Yuan & Yue Wu, 2023. "GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Fengxia Ma & Laxman Ghimire & Qian Ren & Yuping Fan & Tong Chen & Arumugam Balasubramanian & Alan Hsu & Fei Liu & Hongbo Yu & Xuemei Xie & Rong Xu & Hongbo R. Luo, 2024. "Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Iona Wallace & Kheewoong Baek & J. Rajan Prabu & Ronnald Vollrath & Susanne Gronau & Brenda A. Schulman & Kirby N. Swatek, 2023. "Insights into the ISG15 transfer cascade by the UBE1L activating enzyme," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Si-Jia Sun & Xiao-Dong Jiao & Zhi-Gang Chen & Qi Cao & Jia-Hui Zhu & Qi-Rui Shen & Yi Liu & Zhen Zhang & Fang-Fang Xu & Yu Shi & Jie Tong & Shen-Xi Ouyang & Jiang-Tao Fu & Yi Zhao & Jun Ren & Dong-Jie, 2024. "Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Lisa D. J. Schiffelers & Yonas M. Tesfamariam & Lea-Marie Jenster & Stefan Diehl & Sophie C. Binder & Sabine Normann & Jonathan Mayr & Steffen Pritzl & Elena Hagelauer & Anja Kopp & Assaf Alon & Matth, 2024. "Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    12. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Hang Yin & Jian Zheng & Qiuqiu He & Xuan Zhang & Xuzichao Li & Yongjian Ma & Xiao Liang & Jiaqi Gao & Benjamin L. Kocsis & Zhuang Li & Xiang Liu & Neal M. Alto & Long Li & Heng Zhang, 2023. "Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Anja Kopp & Gregor Hagelueken & Isabell Jamitzky & Jonas Moecking & Lisa D. J. Schiffelers & Florian I. Schmidt & Matthias Geyer, 2023. "Pyroptosis inhibiting nanobodies block Gasdermin D pore formation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Shuo Wang & An Song & Jun Xie & Yuan-Yuan Wang & Wen-Da Wang & Meng-Jie Zhang & Zhi-Zhong Wu & Qi-Chao Yang & Hao Li & Junjie Zhang & Zhi-Jun Sun, 2024. "Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Ning Wang & Chao Liu & Yingjie Li & Dongxue Huang & Xinyue Wu & Xiaorong Kou & Xiye Wang & Qinjie Wu & Changyang Gong, 2023. "A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Dao-Gong Zhang & Wen-Qian Yu & Jia-Hui Liu & Li-Gang Kong & Na Zhang & Yong-Dong Song & Xiao-Fei Li & Zhao-Min Fan & Ya-Feng Lyu & Na Li & Hai-Bo Wang, 2023. "Serum/glucocorticoid-inducible kinase 1 deficiency induces NLRP3 inflammasome activation and autoinflammation of macrophages in a murine endolymphatic hydrops model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35348-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.