IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41584-0.html
   My bibliography  Save this article

High-dimensional topographic organization of visual features in the primate temporal lobe

Author

Listed:
  • Mengna Yao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bincheng Wen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Mingpo Yang

    (Chinese Academy of Sciences)

  • Jiebin Guo

    (Chinese Academy of Sciences)

  • Haozhou Jiang

    (Chinese Academy of Sciences)

  • Chao Feng

    (Chinese Academy of Sciences)

  • Yilei Cao

    (Chinese Academy of Sciences)

  • Huiguang He

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Le Chang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The inferotemporal cortex supports our supreme object recognition ability. Numerous studies have been conducted to elucidate the functional organization of this brain area, but there are still important questions that remain unanswered, including how this organization differs between humans and non-human primates. Here, we use deep neural networks trained on object categorization to construct a 25-dimensional space of visual features, and systematically measure the spatial organization of feature preference in both male monkey brains and human brains using fMRI. These feature maps allow us to predict the selectivity of a previously unknown region in monkey brains, which is corroborated by additional fMRI and electrophysiology experiments. These maps also enable quantitative analyses of the topographic organization of the temporal lobe, demonstrating the existence of a pair of orthogonal gradients that differ in spatial scale and revealing significant differences in the functional organization of high-level visual areas between monkey and human brains.

Suggested Citation

  • Mengna Yao & Bincheng Wen & Mingpo Yang & Jiebin Guo & Haozhou Jiang & Chao Feng & Yilei Cao & Huiguang He & Le Chang, 2023. "High-dimensional topographic organization of visual features in the primate temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41584-0
    DOI: 10.1038/s41467-023-41584-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41584-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41584-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Apurva Ratan Murty & Pouya Bashivan & Alex Abate & James J. DiCarlo & Nancy Kanwisher, 2021. "Computational models of category-selective brain regions enable high-throughput tests of selectivity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    3. Pinglei Bao & Liang She & Mason McGill & Doris Y. Tsao, 2020. "A map of object space in primate inferotemporal cortex," Nature, Nature, vol. 583(7814), pages 103-108, July.
    4. Russell Epstein & Nancy Kanwisher, 1998. "A cortical representation of the local visual environment," Nature, Nature, vol. 392(6676), pages 598-601, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Bougou & Michaël Vanhoyland & Alexander Bertrand & Wim Paesschen & Hans Op De Beeck & Peter Janssen & Tom Theys, 2024. "Neuronal tuning and population representations of shape and category in human visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Benjamin Lahner & Kshitij Dwivedi & Polina Iamshchinina & Monika Graumann & Alex Lascelles & Gemma Roig & Alessandro Thomas Gifford & Bowen Pan & SouYoung Jin & N. Apurva Ratan Murty & Kendrick Kay & , 2024. "Modeling short visual events through the BOLD moments video fMRI dataset and metadata," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    4. Marisa Nordt & Jesse Gomez & Vaidehi S. Natu & Alex A. Rezai & Dawn Finzi & Holly Kular & Kalanit Grill-Spector, 2023. "Longitudinal development of category representations in ventral temporal cortex predicts word and face recognition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Ying Wang & Xue Zhang & Chunhui Wang & Weifen Huang & Qian Xu & Dong Liu & Wen Zhou & Shanguang Chen & Yi Jiang, 2022. "Modulation of biological motion perception in humans by gravity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Joel Z Leibo & Qianli Liao & Fabio Anselmi & Tomaso Poggio, 2015. "The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-29, October.
    7. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    10. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    11. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    12. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    13. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    14. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    18. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    20. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41584-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.