IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10500-w.html
   My bibliography  Save this article

Simulating multiple faceted variability in single cell RNA sequencing

Author

Listed:
  • Xiuwei Zhang

    (Center for Computational Biology, UC Berkeley
    Ragon Institute of Massachusetts General Hospital, MIT and Harvard)

  • Chenling Xu

    (Center for Computational Biology, UC Berkeley)

  • Nir Yosef

    (Center for Computational Biology, UC Berkeley
    Ragon Institute of Massachusetts General Hospital, MIT and Harvard
    Chan-Zuckerberg Biohub)

Abstract

The abundance of new computational methods for processing and interpreting transcriptomes at a single cell level raises the need for in silico platforms for evaluation and validation. Here, we present SymSim, a simulator that explicitly models the processes that give rise to data observed in single cell RNA-Seq experiments. The components of the SymSim pipeline pertain to the three primary sources of variation in single cell RNA-Seq data: noise intrinsic to the process of transcription, extrinsic variation indicative of different cell states (both discrete and continuous), and technical variation due to low sensitivity and measurement noise and bias. We demonstrate how SymSim can be used for benchmarking methods for clustering, differential expression and trajectory inference, and for examining the effects of various parameters on their performance. We also show how SymSim can be used to evaluate the number of cells required to detect a rare population under various scenarios.

Suggested Citation

  • Xiuwei Zhang & Chenling Xu & Nir Yosef, 2019. "Simulating multiple faceted variability in single cell RNA sequencing," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10500-w
    DOI: 10.1038/s41467-019-10500-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10500-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10500-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Yue Cao & Pengyi Yang & Jean Yee Hwa Yang, 2021. "A benchmark study of simulation methods for single-cell RNA sequencing data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Angeles Arzalluz-Luque & Pedro Salguero & Sonia Tarazona & Ana Conesa, 2022. "acorde unravels functionally interpretable networks of isoform co-usage from single cell data," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Jolene S. Ranek & Wayne Stallaert & J. Justin Milner & Margaret Redick & Samuel C. Wolff & Adriana S. Beltran & Natalie Stanley & Jeremy E. Purvis, 2024. "DELVE: feature selection for preserving biological trajectories in single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    5. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10500-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.