IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v523y2015i7561d10.1038_nature14590.html
   My bibliography  Save this article

Single-cell chromatin accessibility reveals principles of regulatory variation

Author

Listed:
  • Jason D. Buenrostro

    (Stanford University School of Medicine
    Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine)

  • Beijing Wu

    (Stanford University School of Medicine)

  • Ulrike M. Litzenburger

    (Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine)

  • Dave Ruff

    (Fluidigm Corporation)

  • Michael L. Gonzales

    (Fluidigm Corporation)

  • Michael P. Snyder

    (Stanford University School of Medicine)

  • Howard Y. Chang

    (Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine)

  • William J. Greenleaf

    (Stanford University School of Medicine
    Stanford University)

Abstract

A single-cell method for probing genome-wide chromatin accessibility has been developed; the results provide insight into the relationship between cell-to-cell variation associated with specific trans-factors and cis-elements, as well insights into the relationship between chromatin accessibility and three-dimensional genome organization.

Suggested Citation

  • Jason D. Buenrostro & Beijing Wu & Ulrike M. Litzenburger & Dave Ruff & Michael L. Gonzales & Michael P. Snyder & Howard Y. Chang & William J. Greenleaf, 2015. "Single-cell chromatin accessibility reveals principles of regulatory variation," Nature, Nature, vol. 523(7561), pages 486-490, July.
  • Handle: RePEc:nat:nature:v:523:y:2015:i:7561:d:10.1038_nature14590
    DOI: 10.1038/nature14590
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14590
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:523:y:2015:i:7561:d:10.1038_nature14590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.