IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56424-6.html
   My bibliography  Save this article

MetaQ: fast, scalable and accurate metacell inference via single-cell quantization

Author

Listed:
  • Yunfan Li

    (Sichuan University)

  • Hancong Li

    (Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University
    Sichuan Clinical Research Center for Laboratory Medicine)

  • Yijie Lin

    (Sichuan University)

  • Dan Zhang

    (West China Second University Hospital, Sichuan University)

  • Dezhong Peng

    (Sichuan University)

  • Xiting Liu

    (Georgia Insitute of Technology)

  • Jie Xie

    (Sichuan Normal University)

  • Peng Hu

    (Sichuan University)

  • Lu Chen

    (West China Second University Hospital, Sichuan University)

  • Han Luo

    (Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University
    Sichuan Clinical Research Center for Laboratory Medicine)

  • Xi Peng

    (Sichuan University
    Sichuan University)

Abstract

To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference. This approach reduces computational complexity from exponential to linear while maintaining or surpassing the performance of existing metacell algorithms. Extensive experiments demonstrate that MetaQ excels in downstream tasks such as cell type annotation, developmental trajectory inference, batch integration, and differential expression analysis. Thanks to its superior efficiency and effectiveness, MetaQ makes analyzing datasets with millions of cells practical, offering a powerful solution for single-cell studies in the era of high-throughput profiling.

Suggested Citation

  • Yunfan Li & Hancong Li & Yijie Lin & Dan Zhang & Dezhong Peng & Xiting Liu & Jie Xie & Peng Hu & Lu Chen & Han Luo & Xi Peng, 2025. "MetaQ: fast, scalable and accurate metacell inference via single-cell quantization," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56424-6
    DOI: 10.1038/s41467-025-56424-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56424-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56424-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Tian & Jie Zhang & Xiang Lin & Zhi Wei & Hakon Hakonarson, 2021. "Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Yunfan Li & Dan Zhang & Mouxing Yang & Dezhong Peng & Jun Yu & Yu Liu & Jiancheng Lv & Lu Chen & Xi Peng, 2023. "scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    5. Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Vidhya M. Ravi & Nicolas Neidert & Paulina Will & Kevin Joseph & Julian P. Maier & Jan Kückelhaus & Lea Vollmer & Jonathan M. Goeldner & Simon P. Behringer & Florian Scherer & Melanie Boerries & Marie, 2022. "T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    7. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Ethan Bahl & Snehajyoti Chatterjee & Utsav Mukherjee & Muhammad Elsadany & Yann Vanrobaeys & Li-Chun Lin & Miriam McDonough & Jon Resch & K. Peter Giese & Ted Abel & Jacob J. Michaelson, 2024. "Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. David G. Priest & Takeshi Ebihara & Janyerkye Tulyeu & Jonas N. Søndergaard & Shuhei Sakakibara & Fuminori Sugihara & Shunichiro Nakao & Yuki Togami & Jumpei Yoshimura & Hiroshi Ito & Shinya Onishi & , 2024. "Atypical and non-classical CD45RBlo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Yan Tang & David J. Kwiatkowski & Elizabeth P. Henske, 2022. "Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    18. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Xi Li & Alfonso Poire & Kang Jin Jeong & Dong Zhang & Tugba Yildiran Ozmen & Gang Chen & Chaoyang Sun & Gordon B. Mills, 2024. "C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56424-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.