IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10665-4.html
   My bibliography  Save this article

Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric

Author

Listed:
  • M. Eremenko

    (National Institute of Standards and Technology)

  • V. Krayzman

    (National Institute of Standards and Technology)

  • A. Bosak

    (European Synchrotron Radiation Facility, BP 22-)

  • H. Y. Playford

    (Rutherford Appleton Laboratory)

  • K. W. Chapman

    (Stony Brook University)

  • J. C. Woicik

    (National Institute of Standards and Technology)

  • B. Ravel

    (National Institute of Standards and Technology)

  • I. Levin

    (National Institute of Standards and Technology)

Abstract

The development of useful structure-function relationships for materials that exhibit correlated nanoscale disorder requires adequately large atomistic models which today are obtained mainly via theoretical simulations. Here, we exploit our recent advances in structure-refinement methodology to demonstrate how such models can be derived directly from simultaneous fitting of 3D diffuse- and total-scattering data, and we use this approach to elucidate the complex nanoscale atomic correlations in the classical relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN). Our results uncover details of ordering of Mg and Nb and reveal a hierarchical structure of polar nanoregions associated with the Pb and Nb displacements. The magnitudes of these displacements and their alignment vary smoothly across the nanoregion boundaries. No spatial correlations were found between the chemical ordering and the polar nanoregions. This work highlights a broadly applicable nanoscale structure-refinement method and provides insights into the structure of PMN that require rethinking its existing contentious models.

Suggested Citation

  • M. Eremenko & V. Krayzman & A. Bosak & H. Y. Playford & K. W. Chapman & J. C. Woicik & B. Ravel & I. Levin, 2019. "Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10665-4
    DOI: 10.1038/s41467-019-10665-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10665-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10665-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Liu & Xiaoming Shi & Yonghao Yao & Huajie Luo & Qiang Li & Houbing Huang & He Qi & Yuanpeng Zhang & Yang Ren & Shelly D. Kelly & Krystian Roleder & Joerg C. Neuefeind & Long-Qing Chen & Xianran Xi, 2023. "Emergence of high piezoelectricity from competing local polar order-disorder in relaxor ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jie Yin & Xiaoming Shi & Hong Tao & Zhi Tan & Xiang Lv & Xiangdong Ding & Jun Sun & Yang Zhang & Xingmin Zhang & Kui Yao & Jianguo Zhu & Houbing Huang & Haijun Wu & Shujun Zhang & Jiagang Wu, 2022. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10665-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.