IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34057-3.html
   My bibliography  Save this article

V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception

Author

Listed:
  • Yujie Wu

    (Beijing Normal University)

  • Tian Wang

    (Beijing Normal University
    Beijing Normal University)

  • Tingting Zhou

    (Beijing Normal University)

  • Yang Li

    (Beijing Normal University)

  • Yi Yang

    (Beijing Normal University)

  • Weifeng Dai

    (Beijing Normal University)

  • Yange Zhang

    (Beijing Normal University)

  • Chuanliang Han

    (Beijing Normal University)

  • Dajun Xing

    (Beijing Normal University)

Abstract

Microsaccades play a critical role in refreshing visual information and have been shown to have direction-specific influences on human perception. However, the neural mechanisms underlying such direction-specific effects remains unknown. Here, we report the emergence of direction-specific microsaccade modulation in the middle layer of V2 but not in V1: responses of V2 neurons after microsaccades moved toward their receptive fields were stronger than those when microsaccades moved away. The decreased responses from V1 to V2, which are correlated with the amplitude of microsaccades away from receptive fields, suggest topographically location-specific suppression from an oculomotor source. Consistent with directional effects in V2, microsaccades function as a guide for monkeys’ behavior in a peripheral detection task; both can be explained by a dynamic neural network. Our findings suggest a V1-bypassing suppressive circuit for direction-specific microsaccade modulation in V2 and its functional influence on visual sensitivity, which highlights the optimal sampling nature of microsaccades.

Suggested Citation

  • Yujie Wu & Tian Wang & Tingting Zhou & Yang Li & Yi Yang & Weifeng Dai & Yange Zhang & Chuanliang Han & Dajun Xing, 2022. "V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34057-3
    DOI: 10.1038/s41467-022-34057-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34057-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34057-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Yang & Tian Wang & Yang Li & Weifeng Dai & Guanzhong Yang & Chuanliang Han & Yujie Wu & Dajun Xing, 2022. "Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Zhewei Zhang & Chaoqun Yin & Tianming Yang, 2022. "Evidence accumulation occurs locally in the parietal cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tirin Moore & Katherine M. Armstrong, 2003. "Selective gating of visual signals by microstimulation of frontal cortex," Nature, Nature, vol. 421(6921), pages 370-373, January.
    4. James M. McFarland & Adrian G. Bondy & Richard C. Saunders & Bruce G. Cumming & Daniel A. Butts, 2015. "Saccadic modulation of stimulus processing in primary visual cortex," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Thomas Miconi & Rufin VanRullen, 2016. "A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    3. Tian Wang & Weifeng Dai & Yujie Wu & Yang Li & Yi Yang & Yange Zhang & Tingting Zhou & Xiaowen Sun & Gang Wang & Liang Li & Fei Dou & Dajun Xing, 2024. "Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Baiwei Liu & Anna C. Nobre & Freek van Ede, 2022. "Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yujie Wu & Minghui Zhao & Haoyun Deng & Tian Wang & Yumeng Xin & Weifeng Dai & Jiancao Huang & Tingting Zhou & Xiaowen Sun & Ning Liu & Dajun Xing, 2024. "The neural origin for asymmetric coding of surface color in the primate visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jacob A. Westerberg & Jeffrey D. Schall & Geoffrey F. Woodman & Alexander Maier, 2023. "Feedforward attentional selection in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Santarnecchi, Emiliano & Emmendorfer, Alexandra & Pascual-Leone, Alvaro, 2017. "Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study," Intelligence, Elsevier, vol. 63(C), pages 9-28.
    8. J. L. Amengual & F. Di Bello & S. Ben Hadj Hassen & Suliann Ben Hamed, 2022. "Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Sebastian Bitzer & Jelle Bruineberg & Stefan J Kiebel, 2015. "A Bayesian Attractor Model for Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-35, August.
    10. Robert G. Alexander & Stephen L. Macknik & Susana Martinez-Conde, 2022. "What the Neuroscience and Psychology of Magic Reveal about Misinformation," Publications, MDPI, vol. 10(4), pages 1-19, September.
    11. Nina M. Hanning & Antonio Fernández & Marisa Carrasco, 2023. "Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Tal Seidel Malkinson & Dimitri J. Bayle & Brigitte C. Kaufmann & Jianghao Liu & Alexia Bourgeois & Katia Lehongre & Sara Fernandez-Vidal & Vincent Navarro & Virginie Lambrecq & Claude Adam & Daniel S., 2024. "Intracortical recordings reveal vision-to-action cortical gradients driving human exogenous attention," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Zhetuo Zhao & Ehud Ahissar & Jonathan D. Victor & Michele Rucci, 2023. "Inferring visual space from ultra-fine extra-retinal knowledge of gaze position," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34057-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.