IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27892-3.html
   My bibliography  Save this article

Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey

Author

Listed:
  • Yi Yang

    (Beijing Normal University)

  • Tian Wang

    (Beijing Normal University)

  • Yang Li

    (Beijing Normal University)

  • Weifeng Dai

    (Beijing Normal University)

  • Guanzhong Yang

    (Beijing Normal University)

  • Chuanliang Han

    (Beijing Normal University)

  • Yujie Wu

    (Beijing Normal University)

  • Dajun Xing

    (Beijing Normal University)

Abstract

Both surface luminance and edge contrast of an object are essential features for object identification. However, cortical processing of surface luminance remains unclear. In this study, we aim to understand how the primary visual cortex (V1) processes surface luminance information across its different layers. We report that edge-driven responses are stronger than surface-driven responses in V1 input layers, but luminance information is coded more accurately by surface responses. In V1 output layers, the advantage of edge over surface responses increased eight times and luminance information was coded more accurately at edges. Further analysis of neural dynamics shows that such substantial changes for neural responses and luminance coding are mainly due to non-local cortical inhibition in V1’s output layers. Our results suggest that non-local cortical inhibition modulates the responses elicited by the surfaces and edges of objects, and that switching the coding strategy in V1 promotes efficient coding for luminance.

Suggested Citation

  • Yi Yang & Tian Wang & Yang Li & Weifeng Dai & Guanzhong Yang & Chuanliang Han & Yujie Wu & Dajun Xing, 2022. "Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27892-3
    DOI: 10.1038/s41467-021-27892-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27892-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27892-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Wu & Minghui Zhao & Haoyun Deng & Tian Wang & Yumeng Xin & Weifeng Dai & Jiancao Huang & Tingting Zhou & Xiaowen Sun & Ning Liu & Dajun Xing, 2024. "The neural origin for asymmetric coding of surface color in the primate visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yujie Wu & Tian Wang & Tingting Zhou & Yang Li & Yi Yang & Weifeng Dai & Yange Zhang & Chuanliang Han & Dajun Xing, 2022. "V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Tian Wang & Weifeng Dai & Yujie Wu & Yang Li & Yi Yang & Yange Zhang & Tingting Zhou & Xiaowen Sun & Gang Wang & Liang Li & Fei Dou & Dajun Xing, 2024. "Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27892-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.