IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28279-8.html
   My bibliography  Save this article

Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy

Author

Listed:
  • Yuling Xiao

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Jiang Chen

    (Massachusetts General Hospital and Harvard Medical School
    Zhejiang University)

  • Hui Zhou

    (Brigham and Women’s Hospital, Harvard Medical School
    Wuhan University School of Pharmaceutical Sciences)

  • Xiaodong Zeng

    (Brigham and Women’s Hospital, Harvard Medical School
    Wuhan University School of Pharmaceutical Sciences)

  • Zhiping Ruan

    (Massachusetts General Hospital and Harvard Medical School
    First Affiliated Hospital of Xi’an Jiaotong University)

  • Zhangya Pu

    (Massachusetts General Hospital and Harvard Medical School)

  • Xingya Jiang

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Aya Matsui

    (Massachusetts General Hospital and Harvard Medical School)

  • Lingling Zhu

    (Massachusetts General Hospital and Harvard Medical School)

  • Zohreh Amoozgar

    (Massachusetts General Hospital and Harvard Medical School)

  • Dean Shuailin Chen

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Xiangfei Han

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Dan G. Duda

    (Massachusetts General Hospital and Harvard Medical School)

  • Jinjun Shi

    (Brigham and Women’s Hospital, Harvard Medical School)

Abstract

Immunotherapy with immune checkpoint blockade (ICB) has shown limited benefits in hepatocellular carcinoma (HCC) and other cancers, mediated in part by the immunosuppressive tumor microenvironment (TME). As p53 loss of function may play a role in immunosuppression, we herein examine the effects of restoring p53 expression on the immune TME and ICB efficacy. We develop and optimize a CXCR4-targeted mRNA nanoparticle platform to effectively induce p53 expression in HCC models. Using p53-null orthotopic and ectopic models of murine HCC, we find that combining CXCR4-targeted p53 mRNA nanoparticles with anti-PD-1 therapy effectively induces global reprogramming of cellular and molecular components of the immune TME. This effect results in improved anti-tumor effects compared to anti-PD-1 therapy or therapeutic p53 expression alone. Thus, our findings demonstrate the reversal of immunosuppression in HCC by a p53 mRNA nanomedicine when combined with ICB and support the implementation of this strategy for cancer treatment.

Suggested Citation

  • Yuling Xiao & Jiang Chen & Hui Zhou & Xiaodong Zeng & Zhiping Ruan & Zhangya Pu & Xingya Jiang & Aya Matsui & Lingling Zhu & Zohreh Amoozgar & Dean Shuailin Chen & Xiangfei Han & Dan G. Duda & Jinjun , 2022. "Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28279-8
    DOI: 10.1038/s41467-022-28279-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28279-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28279-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Xue & Lars Zender & Cornelius Miething & Ross A. Dickins & Eva Hernando & Valery Krizhanovsky & Carlos Cordon-Cardo & Scott W. Lowe, 2007. "Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas," Nature, Nature, vol. 445(7128), pages 656-660, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Wenquan Ou & Samantha Stewart & Alisa White & Elyahb A. Kwizera & Jiangsheng Xu & Yuanzhang Fang & James G. Shamul & Changqing Xie & Suliat Nurudeen & Nikki P. Tirada & Xiongbin Lu & Katherine H. R. T, 2023. "In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel A Danziger & Roberta Baronio & Lydia Ho & Linda Hall & Kirsty Salmon & G Wesley Hatfield & Peter Kaiser & Richard H Lathrop, 2009. "Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-12, September.
    2. Yukinari Haraoka & Yuki Akieda & Yuri Nagai & Chihiro Mogi & Tohru Ishitani, 2022. "Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Christel F. A. Ramirez & Daniel Taranto & Masami Ando-Kuri & Marnix H. P. Groot & Efi Tsouri & Zhijie Huang & Daniel Groot & Roelof J. C. Kluin & Daan J. Kloosterman & Joanne Verheij & Jing Xu & Seren, 2024. "Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Nanase Igarashi & Kenichi Miyata & Tze Mun Loo & Masatomo Chiba & Aki Hanyu & Mika Nishio & Hiroko Kawasaki & Hao Zheng & Shinya Toyokuni & Shunsuke Kon & Keiji Moriyama & Yasuyuki Fujita & Akiko Taka, 2022. "Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Benjamin Assouline & Rachel Kahn & Lutfi Hodali & Reba Condiotti & Yarden Engel & Ela Elyada & Tzlil Mordechai-Heyn & Jason R. Pitarresi & Dikla Atias & Eliana Steinberg & Tirza Bidany-Mizrahi & Esthe, 2024. "Senescent cancer-associated fibroblasts in pancreatic adenocarcinoma restrict CD8+ T cell activation and limit responsiveness to immunotherapy in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Jonuelle Acosta & Qinglan Li & Nelson F. Freeburg & Nivitha Murali & Alexandra Indeglia & Grant P. Grothusen & Michelle Cicchini & Hung Mai & Amy C. Gladstein & Keren M. Adler & Katherine R. Doerig & , 2023. "p53 restoration in small cell lung cancer identifies a latent cyclophilin-dependent necrosis mechanism," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Lingzhi Li & Ting Xiang & Jingjing Guo & Fan Guo & Yiting Wu & Han Feng & Jing Liu & Sibei Tao & Ping Fu & Liang Ma, 2024. "Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Subha Philip & Muhammad Atif Zahoor & Huijun Zhi & Yik-Khuan Ho & Chou-Zen Giam, 2014. "Regulation of Human T-Lymphotropic Virus Type I Latency and Reactivation by HBZ and Rex," PLOS Pathogens, Public Library of Science, vol. 10(4), pages 1-12, April.
    9. Rana Salam & Alexa Saliou & Franck Bielle & Mathilde Bertrand & Christophe Antoniewski & Catherine Carpentier & Agusti Alentorn & Laurent Capelle & Marc Sanson & Emmanuelle Huillard & Léa Bellenger & , 2023. "Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Jean-Philippe Coppé & Christopher K Patil & Francis Rodier & Yu Sun & Denise P Muñoz & Joshua Goldstein & Peter S Nelson & Pierre-Yves Desprez & Judith Campisi, 2008. "Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-1, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28279-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.