IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27434-x.html
   My bibliography  Save this article

Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy

Author

Listed:
  • Wenqing Li

    (The Ohio State University)

  • Xinfu Zhang

    (The Ohio State University
    Dalian University of Technology)

  • Chengxiang Zhang

    (The Ohio State University)

  • Jingyue Yan

    (The Ohio State University)

  • Xucheng Hou

    (The Ohio State University)

  • Shi Du

    (The Ohio State University)

  • Chunxi Zeng

    (The Ohio State University)

  • Weiyu Zhao

    (The Ohio State University)

  • Binbin Deng

    (The Ohio State University)

  • David W. McComb

    (The Ohio State University
    The Ohio State University)

  • Yuebao Zhang

    (The Ohio State University)

  • Diana D. Kang

    (The Ohio State University)

  • Junan Li

    (The Ohio State University)

  • William E. Carson

    (The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center)

  • Yizhou Dong

    (The Ohio State University
    The Ohio State University
    The Ohio State University
    The Ohio State University)

Abstract

Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.

Suggested Citation

  • Wenqing Li & Xinfu Zhang & Chengxiang Zhang & Jingyue Yan & Xucheng Hou & Shi Du & Chunxi Zeng & Weiyu Zhao & Binbin Deng & David W. McComb & Yuebao Zhang & Diana D. Kang & Junan Li & William E. Carso, 2021. "Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27434-x
    DOI: 10.1038/s41467-021-27434-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27434-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27434-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Zhijian Li & Laura Amaya & Ruoxi Pi & Sean K. Wang & Alok Ranjan & Robert M. Waymouth & Catherine A. Blish & Howard Y. Chang & Paul A. Wender, 2023. "Charge-altering releasable transporters enhance mRNA delivery in vitro and exhibit in vivo tropism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Abigail R. Gress & Christine E. Ronayne & Joshua M. Thiede & David K. Meyerholz & Samuel Okurut & Julia Stumpf & Tailor V. Mathes & Kenneth Ssebambulidde & David B. Meya & Fiona V. Cresswell & David R, 2023. "Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27434-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.