IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44922-y.html
   My bibliography  Save this article

Self-similar chiral organic molecular cages

Author

Listed:
  • Zhen Wang

    (Huazhong University of Science and Technology
    Wuhan Textile University)

  • Qing-Pu Zhang

    (Huazhong University of Science and Technology)

  • Fei Guo

    (Wuhan Textile University)

  • Hui Ma

    (Huazhong University of Science and Technology)

  • Zi-Hui Liang

    (Wuhan Textile University)

  • Chang-Hai Yi

    (Wuhan Textile University)

  • Chun Zhang

    (Huazhong University of Science and Technology)

  • Chuan-Feng Chen

    (CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences)

Abstract

The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.

Suggested Citation

  • Zhen Wang & Qing-Pu Zhang & Fei Guo & Hui Ma & Zi-Hui Liang & Chang-Hai Yi & Chun Zhang & Chuan-Feng Chen, 2024. "Self-similar chiral organic molecular cages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44922-y
    DOI: 10.1038/s41467-024-44922-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44922-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44922-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Xinchang Wang & Yu Wang & Huayan Yang & Hongxun Fang & Ruixue Chen & Yibin Sun & Nanfeng Zheng & Kai Tan & Xin Lu & Zhongqun Tian & Xiaoyu Cao, 2016. "Assembled molecular face-rotating polyhedra to transfer chirality from two to three dimensions," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    3. Grigory Tikhomirov & Philip Petersen & Lulu Qian, 2017. "Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns," Nature, Nature, vol. 552(7683), pages 67-71, December.
    4. Alan J Situ & Tobias S Ulmer, 2019. "Universal principles of membrane protein assembly, composition and evolution," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.
    5. Xiang Li & Weibin Lin & Vivekanand Sharma & Radoslaw Gorecki & Munmun Ghosh & Basem A. Moosa & Sandra Aristizabal & Shanshan Hong & Niveen M. Khashab & Suzana P. Nunes, 2023. "Polycage membranes for precise molecular separation and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiong Chen & Zhaoyong Li & Ye Lei & Yixin Chen & Hua Tang & Guangcheng Wu & Bin Sun & Yuxi Wei & Tianyu Jiao & Songna Zhang & Feihe Huang & Linjun Wang & Hao Li, 2023. "The sharp structural switch of covalent cages mediated by subtle variation of directing groups," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Banan Alhazmi & Gergo Ignacz & Maria Vincenzo & Mohamed Nejib Hedhili & Gyorgy Szekely & Suzana P. Nunes, 2024. "Ultraselective Macrocycle Membranes for Pharmaceutical Ingredients Separation in Organic Solvents," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Jinrong Wang & Weibin Lin & Zhuo Chen & Valeriia O. Nikolaeva & Lukman O. Alimi & Niveen M. Khashab, 2024. "Smart touchless human–machine interaction based on crystalline porous cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Dong-Xu Cui & Yun Geng & Jun-Ning Kou & Guo-Gang Shan & Chun-Yi Sun & Kun-Hao Zhang & Xin-Long Wang & Zhong-Min Su, 2022. "Chiral self-sorting and guest recognition of porous aromatic cages," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Shanshan Hong & Maria Vincenzo & Alberto Tiraferri & Erica Bertozzi & Radosław Górecki & Bambar Davaasuren & Xiang Li & Suzana P. Nunes, 2024. "Precision ion separation via self-assembled channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Shixin Fa & Tan-hao Shi & Suzu Akama & Keisuke Adachi & Keisuke Wada & Seigo Tanaka & Naoki Oyama & Kenichi Kato & Shunsuke Ohtani & Yuuya Nagata & Shigehisa Akine & Tomoki Ogoshi, 2022. "Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Alexandru Amărioarei & Frankie Spencer & Gefry Barad & Ana-Maria Gheorghe & Corina Iţcuş & Iris Tuşa & Ana-Maria Prelipcean & Andrei Păun & Mihaela Păun & Alfonso Rodriguez-Paton & Romică Trandafir & , 2021. "DNA-Guided Assembly for Fibril Proteins," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    12. Si-Hua Liu & Jun-Hao Zhou & Chunrui Wu & Peng Zhang & Xingzhong Cao & Jian-Ke Sun, 2024. "Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44922-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.