IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46911-7.html
   My bibliography  Save this article

Significant enhancement of proton conductivity in solid acid at the monolayer limit

Author

Listed:
  • Zhangcai Zhang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Lixin Liang

    (Chinese Academy of Sciences)

  • Jianze Feng

    (Chinese Academy of Sciences)

  • Guangjin Hou

    (Chinese Academy of Sciences)

  • Wencai Ren

    (Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Proton transport in nanofluidic channels is not only fundamentally important but also essential for energy applications. Although various strategies have been developed to improve the concentration of active protons in the nanochannels, it remains challenging to achieve a proton conductivity higher than that of Nafion, the benchmark for proton conductors. Here, taking H3Sb3P2O14 and HSbP2O8 as examples, we show that the interactions between protons and the layer frameworks in layered solid acid HnMnZ2O3n+5 are substantially reduced at the monolayer limit, which significantly increases the number of active protons and consequently improves the proton conductivities by ∼8 ‒ 66 times depending on the humidity. The membranes assembled by monolayer H3Sb3P2O14 and HSbP2O8 nanosheets exhibit in-plane proton conductivities of ~ 1.02 and 1.18 S cm−1 at 100% relative humidity and 90 °C, respectively, which are over 5 times higher than the conductivity of Nafion. This work provides a general strategy for facilitating proton transport, which will have broad implications in advancing both nanofluidic research and device applications from energy storage and conversion to neuromorphic computing.

Suggested Citation

  • Zhangcai Zhang & Lixin Liang & Jianze Feng & Guangjin Hou & Wencai Ren, 2024. "Significant enhancement of proton conductivity in solid acid at the monolayer limit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46911-7
    DOI: 10.1038/s41467-024-46911-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46911-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46911-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominik Marx & Mark E. Tuckerman & Jürg Hutter & Michele Parrinello, 1999. "The nature of the hydrated excess proton in water," Nature, Nature, vol. 397(6720), pages 601-604, February.
    2. Fan Yang & Gang Xu & Yibo Dou & Bin Wang & Heng Zhang & Hui Wu & Wei Zhou & Jian-Rong Li & Banglin Chen, 2017. "A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction," Nature Energy, Nature, vol. 2(11), pages 877-883, November.
    3. Florian Garczarek & Klaus Gerwert, 2006. "Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy," Nature, Nature, vol. 439(7072), pages 109-112, January.
    4. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    5. B. Radha & A. Esfandiar & F. C. Wang & A. P. Rooney & K. Gopinadhan & A. Keerthi & A. Mishchenko & A. Janardanan & P. Blake & L. Fumagalli & M. Lozada-Hidalgo & S. Garaj & S. J. Haigh & I. V. Grigorie, 2016. "Molecular transport through capillaries made with atomic-scale precision," Nature, Nature, vol. 538(7624), pages 222-225, October.
    6. Jean-Christophe P. Gabriel & Franck Camerel & Bruno J. Lemaire & Hervé Desvaux & Patrick Davidson & Patrick Batail, 2001. "Swollen liquid-crystalline lamellar phase based on extended solid-like sheets," Nature, Nature, vol. 413(6855), pages 504-508, October.
    7. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    3. Weiming Wang & Qingguo Liu & Yingnan Liu & Rigong Zhang & Tian Cheng & Youguo Yan & Qianze Hu & Tingting Li, 2023. "Research Status, Existing Problems, and the Prospect of New Methods of Determining the Lower Limit of the Physical Properties of Tight Sandstone Reservoirs," Energies, MDPI, vol. 16(15), pages 1-19, July.
    4. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    5. Florian N. Brünig & Manuel Rammler & Ellen M. Adams & Martina Havenith & Roland R. Netz, 2022. "Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    8. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    9. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    14. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    15. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    16. Tianhao Zhu & Yan Kong & Bohui Lyu & Li Cao & Benbing Shi & Xiaoyao Wang & Xiao Pang & Chunyang Fan & Chao Yang & Hong Wu & Zhongyi Jiang, 2023. "3D covalent organic framework membrane with fast and selective ion transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Feng-Fan Yang & Xiao-Lu Wang & Jiayue Tian & Yang Yin & Linfeng Liang, 2024. "Vitrification-enabled enhancement of proton conductivity in hydrogen-bonded organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    19. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    20. Chen, Xin & Zhang, Ying & Xu, Sheng & Dong, Fei, 2023. "Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 333(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46911-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.