IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v554y2018i7690d10.1038_nature25464.html
   My bibliography  Save this article

Reconciling divergent trends and millennial variations in Holocene temperatures

Author

Listed:
  • Jeremiah Marsicek

    (University of Wyoming)

  • Bryan N. Shuman

    (University of Wyoming)

  • Patrick J. Bartlein

    (University of Oregon)

  • Sarah L. Shafer

    (US Geological Survey)

  • Simon Brewer

    (University of Utah)

Abstract

Analysis of pollen records from North America and Europe reveals a warming trend over the Holocene, consistent with climate-model simulations.

Suggested Citation

  • Jeremiah Marsicek & Bryan N. Shuman & Patrick J. Bartlein & Sarah L. Shafer & Simon Brewer, 2018. "Reconciling divergent trends and millennial variations in Holocene temperatures," Nature, Nature, vol. 554(7690), pages 92-96, February.
  • Handle: RePEc:nat:nature:v:554:y:2018:i:7690:d:10.1038_nature25464
    DOI: 10.1038/nature25464
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25464
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yancheng Zhang & Xufeng Zheng & Deming Kong & Hong Yan & Zhonghui Liu, 2021. "Enhanced North Pacific subtropical gyre circulation during the late Holocene," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Jiawei Jiang & Bowen Meng & Huanye Wang & Hu Liu & Mu Song & Yuxin He & Cheng Zhao & Jun Cheng & Guoqiang Chu & Sergey Krivonogov & Weiguo Liu & Zhonghui Liu, 2024. "Spatial patterns of Holocene temperature changes over mid-latitude Eurasia," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Olivier Cartapanis & Lukas Jonkers & Paola Moffa-Sanchez & Samuel L. Jaccard & Anne Vernal, 2022. "Complex spatio-temporal structure of the Holocene Thermal Maximum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Lixiong Xiang & Xiaozhong Huang & Mingjie Sun & Virginia N. Panizzo & Chong Huang & Min Zheng & Xuemei Chen & Fahu Chen, 2023. "Prehistoric population expansion in Central Asia promoted by the Altai Holocene Climatic Optimum," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    8. Zihan Jiang & Qian Zhang & Hanyue Xu & Ninglian Wang & Li Zhang & Domenico Capolongo, 2022. "Palaeoclimate Reconstruction of the Central Gangdise Mountains, Southern Tibetan Plateau, Based on Glacier Modelling," Land, MDPI, vol. 11(8), pages 1-13, August.
    9. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:554:y:2018:i:7690:d:10.1038_nature25464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.