IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33075-5.html
   My bibliography  Save this article

A multi-state dynamic process confers mechano-adaptation to a biological nanomachine

Author

Listed:
  • Navish Wadhwa

    (Arizona State University
    Arizona State University)

  • Alberto Sassi

    (IBM T. J. Watson Research Center)

  • Howard C. Berg

    (Harvard University)

  • Yuhai Tu

    (IBM T. J. Watson Research Center)

Abstract

Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear. Here, we combine single motor eletrorotation experiments and theoretical modeling to show that mechano-adaptation of the flagellar motor is enabled by multiple mechanosensitive internal states. Dwell time statistics from experiments suggest the existence of at least two bound states with a high and a low unbinding rate, respectively. A first-passage-time analysis of a four-state model quantitatively explains the experimental data and determines the transition rates among all four states. The torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the bound states, possibly via a catch bond mechanism. Similar force-mediated feedback enabled by multiple internal states may apply to adaptation in other macromolecular complexes.

Suggested Citation

  • Navish Wadhwa & Alberto Sassi & Howard C. Berg & Yuhai Tu, 2022. "A multi-state dynamic process confers mechano-adaptation to a biological nanomachine," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33075-5
    DOI: 10.1038/s41467-022-33075-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33075-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33075-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan T. Marshall & Mian Long & James W. Piper & Tadayuki Yago & Rodger P. McEver & Cheng Zhu, 2003. "Direct observation of catch bonds involving cell-adhesion molecules," Nature, Nature, vol. 423(6936), pages 190-193, May.
    2. William S. Ryu & Richard M. Berry & Howard C. Berg, 2000. "Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio," Nature, Nature, vol. 403(6768), pages 444-447, January.
    3. Maximilian M. Sauer & Roman P. Jakob & Jonathan Eras & Sefer Baday & Deniz Eriş & Giulio Navarra & Simon Bernèche & Beat Ernst & Timm Maier & Rudi Glockshuber, 2016. "Catch-bond mechanism of the bacterial adhesin FimH," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    4. Mark C. Leake & Jennifer H. Chandler & George H. Wadhams & Fan Bai & Richard M. Berry & Judith P. Armitage, 2006. "Stoichiometry and turnover in single, functioning membrane protein complexes," Nature, Nature, vol. 443(7109), pages 355-358, September.
    5. Bungo Akiyoshi & Krishna K. Sarangapani & Andrew F. Powers & Christian R. Nelson & Steve L. Reichow & Hugo Arellano-Santoyo & Tamir Gonen & Jeffrey A. Ranish & Charles L. Asbury & Sue Biggins, 2010. "Tension directly stabilizes reconstituted kinetochore-microtubule attachments," Nature, Nature, vol. 468(7323), pages 576-579, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haidai Hu & Philipp F. Popp & Mònica Santiveri & Aritz Roa-Eguiara & Yumeng Yan & Freddie J. O. Martin & Zheyi Liu & Navish Wadhwa & Yong Wang & Marc Erhardt & Nicholas M. I. Taylor, 2023. "Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun-Kyu Choi & Peiwen Cong & Chenghao Ge & Aswin Natarajan & Baoyu Liu & Yong Zhang & Kaitao Li & Muaz Nik Rushdi & Wei Chen & Jizhong Lou & Michelle Krogsgaard & Cheng Zhu, 2023. "Catch bond models may explain how force amplifies TCR signaling and antigen discrimination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Zhaowei Liu & Haipei Liu & Andrés M. Vera & Byeongseon Yang & Philip Tinnefeld & Michael A. Nash, 2024. "Engineering an artificial catch bond using mechanical anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Brian J Schmidt & Jason A Papin & Michael B Lawrence, 2009. "Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
    4. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    5. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    6. Huilong Luo & Yanmei Chen & Xiao Kuang & Xinyue Wang & Fengmin Yang & Zhenping Cao & Lu Wang & Sisi Lin & Feng Wu & Jinyao Liu, 2022. "Chemical reaction-mediated covalent localization of bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Anna K. Regt & Cordell J. Clark & Charles L. Asbury & Sue Biggins, 2022. "Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Muaz Nik Rushdi & Victor Pan & Kaitao Li & Hyun-Kyu Choi & Stefano Travaglino & Jinsung Hong & Fletcher Griffitts & Pragati Agnihotri & Roy A. Mariuzza & Yonggang Ke & Cheng Zhu, 2022. "Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Dawid S. Zyla & Thomas Wiegand & Paul Bachmann & Rafal Zdanowicz & Christoph Giese & Beat H. Meier & Gabriel Waksman & Manuela K. Hospenthal & Rudi Glockshuber, 2024. "The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Nicola Hellen & Gregory I. Mashanov & Ianina L. Conte & Sophie Trionnaire & Victor Babich & Laura Knipe & Alamin Mohammed & Kazim Ogmen & Silvia Martin-Almedina & Katalin Török & Matthew J. Hannah & J, 2022. "P-selectin mobility undergoes a sol-gel transition as it diffuses from exocytosis sites into the cell membrane," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Cyril F Reboul & Daniel A Andrews & Musammat F Nahar & Ashley M Buckle & Anna Roujeinikova, 2011. "Crystallographic and Molecular Dynamics Analysis of Loop Motions Unmasking the Peptidoglycan-Binding Site in Stator Protein MotB of Flagellar Motor," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-7, April.
    12. Basila Moochickal Assainar & Kaushik Ragunathan & Ryan D. Baldridge, 2024. "Direct observation of autoubiquitination for an integral membrane ubiquitin ligase in ERAD," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Serena Petracchini & Daniel Hamaoui & Anne Doye & Atef Asnacios & Florian Fage & Elisa Vitiello & Martial Balland & Sebastien Janel & Frank Lafont & Mukund Gupta & Benoit Ladoux & Jerôme Gilleron & Te, 2022. "Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    14. Jack W. Shepherd & Sebastien Guilbaud & Zhaokun Zhou & Jamieson A. L. Howard & Matthew Burman & Charley Schaefer & Adam Kerrigan & Clare Steele-King & Agnes Noy & Mark C. Leake, 2024. "Correlating fluorescence microscopy, optical and magnetic tweezers to study single chiral biopolymers such as DNA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Chenrui Qin & Yanhui Xiang & Jie Liu & Ruilin Zhang & Ziming Liu & Tingting Li & Zhi Sun & Xiaoyi Ouyang & Yeqing Zong & Haoqian M. Zhang & Qi Ouyang & Long Qian & Chunbo Lou, 2023. "Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Haidai Hu & Philipp F. Popp & Mònica Santiveri & Aritz Roa-Eguiara & Yumeng Yan & Freddie J. O. Martin & Zheyi Liu & Navish Wadhwa & Yong Wang & Marc Erhardt & Nicholas M. I. Taylor, 2023. "Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Valentina Lo Schiavo & Philippe Robert & Laurent Limozin & Pierre Bongrand, 2012. "Quantitative Modeling Assesses the Contribution of Bond Strengthening, Rebinding and Force Sharing to the Avidity of Biomolecule Interactions," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    18. Yoriko Lill & Lorne D Jordan & Chuck R Smallwood & Salete M Newton & Markus A Lill & Phillip E Klebba & Ken Ritchie, 2016. "Confined Mobility of TonB and FepA in Escherichia coli Membranes," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33075-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.