IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54123-2.html
   My bibliography  Save this article

Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size

Author

Listed:
  • Lee-Ya Chu

    (The Francis Crick Institute)

  • Daniel Stedman

    (The Francis Crick Institute
    King’s College London)

  • Julian Gannon

    (The Francis Crick Institute)

  • Susan Cox

    (King’s College London)

  • Georgii Pobegalov

    (The Francis Crick Institute
    University College London)

  • Maxim I. Molodtsov

    (The Francis Crick Institute
    University College London)

Abstract

Correct mitotic spindle size is required for accurate chromosome segregation during cell division. It is controlled by mechanical forces generated by molecular motors and non-motor proteins acting on spindle microtubules. However, how forces generated by individual proteins enable bipolar spindle organization is not well understood. Here, we develop tools to measure contributions of individual molecules to this force balance. We show that microtubule plus-end binding proteins act at microtubule tips synergistically with minus-end directed motors to produce a system that can generate both pushing and pulling forces. To generate pushing force, the system harnesses forces generated by the growing tips of microtubules providing unique contribution to the force balance distinct from all other motors that act in the mitotic spindle. Our results reveal that microtubules are essential force generators for establishing spindle size and pave the way for understanding how mechanical forces can be fine-tuned to control the fidelity of chromosome segregation.

Suggested Citation

  • Lee-Ya Chu & Daniel Stedman & Julian Gannon & Susan Cox & Georgii Pobegalov & Maxim I. Molodtsov, 2024. "Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54123-2
    DOI: 10.1038/s41467-024-54123-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54123-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54123-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Annemarie Lüdecke & Anja-Maria Seidel & Marcus Braun & Zdenek Lansky & Stefan Diez, 2018. "Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Bungo Akiyoshi & Krishna K. Sarangapani & Andrew F. Powers & Christian R. Nelson & Steve L. Reichow & Hugo Arellano-Santoyo & Tamir Gonen & Jeffrey A. Ranish & Charles L. Asbury & Sue Biggins, 2010. "Tension directly stabilizes reconstituted kinetochore-microtubule attachments," Nature, Nature, vol. 468(7323), pages 576-579, November.
    3. Stephen R. Norris & Seungyeon Jung & Prashant Singh & Claire E. Strothman & Amanda L. Erwin & Melanie D. Ohi & Marija Zanic & Ryoma Ohi, 2018. "Microtubule minus-end aster organization is driven by processive HSET-tubulin clusters," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    2. Navish Wadhwa & Alberto Sassi & Howard C. Berg & Yuhai Tu, 2022. "A multi-state dynamic process confers mechano-adaptation to a biological nanomachine," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Hyun-Kyu Choi & Peiwen Cong & Chenghao Ge & Aswin Natarajan & Baoyu Liu & Yong Zhang & Kaitao Li & Muaz Nik Rushdi & Wei Chen & Jizhong Lou & Michelle Krogsgaard & Cheng Zhu, 2023. "Catch bond models may explain how force amplifies TCR signaling and antigen discrimination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Anna K. Regt & Cordell J. Clark & Charles L. Asbury & Sue Biggins, 2022. "Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xinglei Liu & Lu Rao & Weihong Qiu & Florian Berger & Arne Gennerich, 2024. "Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54123-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.