IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32930-9.html
   My bibliography  Save this article

Non-Hookean large elastic deformation in bulk crystalline metals

Author

Listed:
  • Sheng Xu

    (Tohoku University)

  • Takumi Odaira

    (Tohoku University)

  • Shunsuke Sato

    (Tohoku University)

  • Xiao Xu

    (Tohoku University)

  • Toshihiro Omori

    (Tohoku University)

  • Stefanus Harjo

    (J-PARC Center, Japan Atomic Energy Agency)

  • Takuro Kawasaki

    (J-PARC Center, Japan Atomic Energy Agency)

  • Hanuš Seiner

    (Czech Academy of Sciences)

  • Kristýna Zoubková

    (Czech Technical University in Prague)

  • Yasukazu Murakami

    (Kyushu University)

  • Ryosuke Kainuma

    (Tohoku University)

Abstract

Crystalline metals can have large theoretical elastic strain limits. However, a macroscopic block of conventional crystalline metals practically suffers a very limited elastic deformation of 4.3% in a Cu-based single crystalline alloy at its bulk scale at room temperature. The large macroscopic elastic strain that originates from the reversible lattice strain of a single phase is demonstrated by in situ microstructure and neutron diffraction observations. Furthermore, the elastic reversible deformation, which is nonhysteretic and quasilinear, is associated with a pronounced elastic softening phenomenon. The increase in the stress gives rise to a reduced Young’s modulus, unlike the traditional Hooke’s law behaviour. The experimental discovery of a non-Hookean large elastic deformation offers the potential for the development of bulk crystalline metals as high-performance mechanical springs or for new applications via “elastic strain engineering.”

Suggested Citation

  • Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32930-9
    DOI: 10.1038/s41467-022-32930-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32930-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32930-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomoe Kusama & Toshihiro Omori & Takashi Saito & Sumio Kise & Toyonobu Tanaka & Yoshikazu Araki & Ryosuke Kainuma, 2017. "Ultra-large single crystals by abnormal grain growth," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Suihe Jiang & Hui Wang & Yuan Wu & Xiongjun Liu & Honghong Chen & Mengji Yao & Baptiste Gault & Dirk Ponge & Dierk Raabe & Akihiko Hirata & Mingwei Chen & Yandong Wang & Zhaoping Lu, 2017. "Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation," Nature, Nature, vol. 544(7651), pages 460-464, April.
    3. Q. F. He & J. G. Wang & H. A. Chen & Z. Y. Ding & Z. Q. Zhou & L. H. Xiong & J. H. Luan & J. M. Pelletier & J. C. Qiao & Q. Wang & L. L. Fan & Y. Ren & Q. S. Zeng & C. T. Liu & C. W. Pao & D. J. Srolo, 2022. "A highly distorted ultraelastic chemically complex Elinvar alloy," Nature, Nature, vol. 602(7896), pages 251-257, February.
    4. Tianou He & Weicong Wang & Fenglei Shi & Xiaolong Yang & Xiang Li & Jianbo Wu & Yadong Yin & Mingshang Jin, 2021. "Mastering the surface strain of platinum catalysts for efficient electrocatalysis," Nature, Nature, vol. 598(7879), pages 76-81, October.
    5. Zhiming Li & Konda Gokuldoss Pradeep & Yun Deng & Dierk Raabe & Cemal Cem Tasan, 2016. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, Nature, vol. 534(7606), pages 227-230, June.
    6. Q. F. He & J. G. Wang & H. A. Chen & Z. Y. Ding & Z. Q. Zhou & L. H. Xiong & J. H. Luan & J. M. Pelletier & J. C. Qiao & Q. Wang & L. L. Fan & Y. Ren & Q. S. Zeng & C. T. Liu & C. W. Pao & D. J. Srolo, 2022. "Author Correction: A highly distorted ultraelastic chemically complex Elinvar alloy," Nature, Nature, vol. 603(7903), pages 32-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengyuan Zhang & Ying Gao & Chengmin Xie & Xiaolan Duan & Xiaoyan Lu & Kongliang Luo & Jian Ye & Xiaopeng Wang & Xinhua Gao & Qiang Niu & Pengfei Zhang & Sheng Dai, 2024. "Designing water resistant high entropy oxide materials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. H. Wang & P. Y. Yang & W. J. Zhao & S. H. Ma & J. H. Hou & Q. F. He & C. L. Wu & H. A. Chen & Q. Wang & Q. Cheng & B. S. Guo & J. C. Qiao & W. J. Lu & S. J. Zhao & X. D. Xu & C. T. Liu & Y. Liu & C. W, 2024. "Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yeqiang Bu & Yuan Wu & Zhifeng Lei & Xiaoyuan Yuan & Leqing Liu & Peng Wang & Xiongjun Liu & Honghui Wu & Jiabin Liu & Hongtao Wang & R. O. Ritchie & Zhaoping Lu & Wei Yang, 2024. "Elastic strain-induced amorphization in high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Mo Xie & Weina Fang & Zhibei Qu & Yang Hu & Yichi Zhang & Jie Chao & Jiye Shi & Lihua Wang & Lianhui Wang & Yang Tian & Chunhai Fan & Huajie Liu, 2023. "High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Zhuoran Xia & Xiangyi Huang & Jiaqi Liu & Wen Dai & Liuxiong Luo & Zhaohan Jiang & Shen Gong & Yuyuan Zhao & Zhou Li, 2024. "Designing Ni2MnSn Heusler magnetic nanoprecipitate in copper alloy for increased strength and electromagnetic shielding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Shenghua Wu & Hanne S. Soreide & Bin Chen & Jianjun Bian & Chong Yang & Chunan Li & Peng Zhang & Pengming Cheng & Jinyu Zhang & Yong Peng & Gang Liu & Yanjun Li & Hans J. Roven & Jun Sun, 2022. "Freezing solute atoms in nanograined aluminum alloys via high-density vacancies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Xiaohui Zhang & Zhihu Sun & Rui Jin & Chuwei Zhu & Chuanlin Zhao & Yue Lin & Qiaoqiao Guan & Lina Cao & Hengwei Wang & Shang Li & Hancheng Yu & Xinyu Liu & Leilei Wang & Shiqiang Wei & Wei-Xue Li & Ju, 2023. "Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Qingfeng Wu & Feng He & Junjie Li & Hyoung Seop Kim & Zhijun Wang & Jincheng Wang, 2022. "Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Shucai Zhang & Hao Feng & Huabing Li & Zhouhua Jiang & Tao Zhang & Hongchun Zhu & Yue Lin & Wei Zhang & Guoping Li, 2023. "Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    20. Hyun Chung & Won Seok Choi & Hosun Jun & Hyeon-Seok Do & Byeong-Joo Lee & Pyuck-Pa Choi & Heung Nam Han & Won-Seok Ko & Seok Su Sohn, 2023. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32930-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.