IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32669-3.html
   My bibliography  Save this article

Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination

Author

Listed:
  • Yi-Teng Huang

    (University of Cambridge)

  • Seán R. Kavanagh

    (University College London
    Imperial College London
    University College London)

  • Marcello Righetto

    (University of Oxford, Clarendon Laboratory)

  • Marin Rusu

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Igal Levine

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Thomas Unold

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Szymon J. Zelewski

    (University of Cambridge
    Wrocław University of Science and Technology)

  • Alexander J. Sneyd

    (University of Cambridge)

  • Kaiwen Zhang

    (University of Cambridge)

  • Linjie Dai

    (University of Cambridge)

  • Andrew J. Britton

    (University of Leeds)

  • Junzhi Ye

    (University of Cambridge)

  • Jaakko Julin

    (University of Jyväskylä)

  • Mari Napari

    (University of Southampton)

  • Zhilong Zhang

    (University of Cambridge)

  • James Xiao

    (University of Cambridge)

  • Mikko Laitinen

    (Technical University of Munich)

  • Laura Torrente-Murciano

    (University of Cambridge)

  • Samuel D. Stranks

    (University of Cambridge
    University of Cambridge)

  • Akshay Rao

    (University of Cambridge)

  • Laura M. Herz

    (University of Oxford, Clarendon Laboratory
    Technical University of Munich)

  • David O. Scanlon

    (University College London
    University College London)

  • Aron Walsh

    (Imperial College London
    University College London)

  • Robert L. Z. Hoye

    (Imperial College London)

Abstract

I-V-VI2 ternary chalcogenides are gaining attention as earth-abundant, nontoxic, and air-stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly-rising absorption onsets, and their charge-carrier transport is not well understood yet. Herein, we investigate cation-disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching >105 cm−1 just above its pseudo-direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast (picosecond-time scale) photoconductivity decay and long-lived charge-carrier population persisting for over one microsecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non-bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially-separated electrons and holes, as well as the slow decay of trapped holes. This work reveals the critical role of cation disorder in these systems on both absorption characteristics and charge-carrier kinetics.

Suggested Citation

  • Yi-Teng Huang & Seán R. Kavanagh & Marcello Righetto & Marin Rusu & Igal Levine & Thomas Unold & Szymon J. Zelewski & Alexander J. Sneyd & Kaiwen Zhang & Linjie Dai & Andrew J. Britton & Junzhi Ye & J, 2022. "Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32669-3
    DOI: 10.1038/s41467-022-32669-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32669-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32669-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Inès Massiot & Andrea Cattoni & Stéphane Collin, 2020. "Progress and prospects for ultrathin solar cells," Nature Energy, Nature, vol. 5(12), pages 959-972, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueshuang Mao & Bingnan Yu & Pengfei Wang & Shuai Yue & Sihui Zhan, 2024. "Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Fan & Bojun Wang & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Duy Phong Pham & Junsin Yi, 2023. "Real-Time ITO Layer Thickness for Solar Cells Using Deep Learning and Optical Interference Phenomena," Energies, MDPI, vol. 16(16), pages 1-13, August.
    2. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
    4. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
    7. Chong Li & Qi Liu & Shengyang Tao, 2022. "Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32669-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.