IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50238-8.html
   My bibliography  Save this article

Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes

Author

Listed:
  • Yueshuang Mao

    (Nankai University
    Shanxi University)

  • Bingnan Yu

    (Nankai University)

  • Pengfei Wang

    (Nankai University)

  • Shuai Yue

    (Nankai University)

  • Sihui Zhan

    (Nankai University)

Abstract

Nitroaromatic compounds (NACs) with electron-withdrawing nitro (-NO2) groups are typical refractory pollutants. Despite advanced oxidation processes (AOPs) being appealing degradation technologies, inefficient ring-opening oxidation of NACs and practical large-scale applications remain challenges. Here we tackle these challenges by designing a reduction-oxidation coupling (ROC) degradation process in LaFe0.95Cu0.05O3@carbon fiber cloth (LFCO@CFC)/PMS/Vis continuous flow system. Cu doping enhances the photoelectron transfer, thus triggering the -NO2 photoreduction and breaking the barriers in the ring opening. Also, it modulates surface electronic configuration to generate radicals and non-radicals for subsequent oxidation of reduction products. Based on this, the ROC process can effectively remove and mineralize NACs under the environmental background. More importantly, the LFCO catalyst outperformed most of the recently reported catalysts with lower cost (13.72 CNY/ton) and higher processing capacity (3600 t/month). Furthermore, the high scalability, material durability, and catalytic activity of LFCO@CFC under various realistic environmental conditions prove the potential ability for large-scale applications.

Suggested Citation

  • Yueshuang Mao & Bingnan Yu & Pengfei Wang & Shuai Yue & Sihui Zhan, 2024. "Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50238-8
    DOI: 10.1038/s41467-024-50238-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50238-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50238-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaomiao Guo & Nan Xue & Ming Zhang & Rammile Ettelaie & Hengquan Yang, 2022. "A supraparticle-based biomimetic cascade catalyst for continuous flow reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yuehan Cao & Lan Guo & Meng Dan & Dmitry E. Doronkin & Chunqiu Han & Zhiqiang Rao & Yang Liu & Jie Meng & Zeai Huang & Kaibo Zheng & Peng Chen & Fan Dong & Ying Zhou, 2021. "Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Jie Dai & Yinlong Zhu & Hassan A. Tahini & Qian Lin & Yu Chen & Daqin Guan & Chuan Zhou & Zhiwei Hu & Hong-Ji Lin & Ting-Shan Chan & Chien-Te Chen & Sean C. Smith & Huanting Wang & Wei Zhou & Zongping, 2020. "Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Yi-Teng Huang & Seán R. Kavanagh & Marcello Righetto & Marin Rusu & Igal Levine & Thomas Unold & Szymon J. Zelewski & Alexander J. Sneyd & Kaiwen Zhang & Linjie Dai & Andrew J. Britton & Junzhi Ye & J, 2022. "Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Ting Zhang & Zhe Sun & Shiyan Li & Baojun Wang & Yuefeng Liu & Riguang Zhang & Zhongkui Zhao, 2022. "Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yitao Dai & Chao Li & Yanbin Shen & Tingbin Lim & Jian Xu & Yongwang Li & Hans Niemantsverdriet & Flemming Besenbacher & Nina Lock & Ren Su, 2018. "Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiawei Zhu & Yu Zhang & Zitao Chen & Zhenbao Zhang & Xuezeng Tian & Minghua Huang & Xuedong Bai & Xue Wang & Yongfa Zhu & Heqing Jiang, 2024. "Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO2 electromethanation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Alejandro Prats Luján & Mohammad Faizan Bhat & Sona Tsaturyan & Ronald Merkerk & Haigen Fu & Gerrit J. Poelarends, 2023. "Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    10. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Yajun Zou & Sara Abednatanzi & Parviz Gohari Derakhshandeh & Stefano Mazzanti & Christoph M. Schüßlbauer & Daniel Cruz & Pascal Voort & Jian-Wen Shi & Markus Antonietti & Dirk M. Guldi & Aleksandr Sav, 2022. "Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Zhijun Li & Xiaowen Lu & Cong Guo & Siqi Ji & Hongxue Liu & Chunmin Guo & Xue Lu & Chao Wang & Wensheng Yan & Bingyu Liu & Wei Wu & J. Hugh Horton & Shixuan Xin & Yu Wang, 2024. "Solvent-free selective hydrogenation of nitroaromatics to azoxy compounds over Co single atoms decorated on Nb2O5 nanomeshes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Huanhuan Li & Yawen Huang & Fuqiang Chen & Zhigang Zeng & Frank Hollmann & Xin Wu & Xiyang Zhang & Peigao Duan & Hao Su & Jianjun Shi & Xiang Sheng & Wuyuan Zhang, 2024. "Unspecific peroxygenase enabled formation of azoxy compounds," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Luqi Wang & Yixin Hao & Liming Deng & Feng Hu & Sheng Zhao & Linlin Li & Shengjie Peng, 2022. "Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50238-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.