Author
Listed:
- Zhou, Yi-Peng
- Chen, Yang
- Li, Jing-Zhi
- Ran, Chen-Xin
- Wu, Zhong-Bin
Abstract
Ultrathin tandem solar cells have potential for a wide range of applications due to flexibility, high power-to-weight ratio, price competitiveness (low-cost and low capex). However, unlike standard tests under air-mass1.5 (AM1.5) 1 sun illumination, differences in spectral irradiance and incidence angle caused by spatio-temporal variation of solar light have significant effects on the tandem solar cells, especially on the ultrathin tandem solar cells, which are much more sensitive to incidence angle due to the sub-micro/micro textured structures. We develop a multiscale optical model and photovoltaic characteristic model for detailed description of photon propagation and carrier transport in the ultrathin tandem solar cells, respectively. Though analyses on the effect of inverted pyramid photonic crystal architecture on light absorption of the ultrathin tandem solar cells, the optimal structural parameters of inverted pyramid photonic crystal architecture are obtained, which leads to an improvement of the power conversion efficiency of ultrathin tandem solar cell by 0.82 % compared to the tandem solar cells with pristine thickness (∼180 μm). Based on the optimized ultrathin tandem solar cells, detailed mechanisms of the effects of variation in regional and daily spectral irradiances on the PV characteristics are unravelled. Compared to daily spectral irradiance variations, regional spectral irradiance variations have a greater effect on the structural dimensions and performance of ultrathin tandem solar cells. However, in the daily solar light variations, incidence angle variation has a significant effect on ultrathin tandem solar cells, and this effect is primarily reflected in the bottom sub-cells. The unravelled mechanism of the effect of incidence angle variation helps us propose a recommendation to improve the daily output power of the ultrathin tandem solar cells (2312.30 W·h/m2) in the analyses under real-world condition.
Suggested Citation
Zhou, Yi-Peng & Chen, Yang & Li, Jing-Zhi & Ran, Chen-Xin & Wu, Zhong-Bin, 2025.
"Effects of spatio-temporal variations of solar light on the multiscale optical and electrical characteristics of ultrathin tandem solar cells,"
Applied Energy, Elsevier, vol. 377(PB).
Handle:
RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019093
DOI: 10.1016/j.apenergy.2024.124526
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019093. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.