IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32369-y.html
   My bibliography  Save this article

The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction

Author

Listed:
  • Gangbin Yan

    (University of Chicago)

  • George Kim

    (Illinois Institute of Technology)

  • Renliang Yuan

    (University of Illinois at Urbana-Champaign)

  • Eli Hoenig

    (University of Chicago)

  • Fengyuan Shi

    (University of Illinois Chicago)

  • Wenxiang Chen

    (University of Illinois at Urbana-Champaign)

  • Yu Han

    (University of Chicago)

  • Qian Chen

    (University of Illinois at Urbana-Champaign)

  • Jian-Min Zuo

    (University of Illinois at Urbana-Champaign)

  • Wei Chen

    (Illinois Institute of Technology)

  • Chong Liu

    (University of Chicago)

Abstract

Electrochemical intercalation can enable lithium extraction from dilute water sources. However, during extraction, co-intercalation of lithium and sodium ions occurs, and the response of host materials to this process is not fully understood. This aspect limits the rational materials designs for improving lithium extraction. Here, to address this knowledge gap, we report one-dimensional (1D) olivine iron phosphate (FePO4) as a model host to investigate the co-intercalation behavior and demonstrate the control of lithium selectivity through intercalation kinetic manipulations. Via computational and experimental investigations, we show that lithium and sodium tend to phase separate in the host. Exploiting this mechanism, we increase the sodium-ion intercalation energy barrier by using partially filled 1D lithium channels via non-equilibrium solid-solution lithium seeding or remnant lithium in the solid-solution phases. The lithium selectivity enhancement after seeding shows a strong correlation with the fractions of solid-solution phases with high lithium content (i.e., LixFePO4 with 0.5 ≤ x

Suggested Citation

  • Gangbin Yan & George Kim & Renliang Yuan & Eli Hoenig & Fengyuan Shi & Wenxiang Chen & Yu Han & Qian Chen & Jian-Min Zuo & Wei Chen & Chong Liu, 2022. "The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32369-y
    DOI: 10.1038/s41467-022-32369-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32369-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32369-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Hess & Tsuyoshi Sasaki & Claire Villevieille & Petr Novák, 2015. "Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    2. Byoungwoo Kang & Gerbrand Ceder, 2009. "Battery materials for ultrafast charging and discharging," Nature, Nature, vol. 458(7235), pages 190-193, March.
    3. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    4. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gangbin Yan & Jialiang Wei & Emory Apodaca & Suin Choi & Peter J. Eng & Joanne E. Stubbs & Yu Han & Siqi Zou & Mrinal K. Bera & Ronghui Wu & Evguenia Karapetrova & Hua Zhou & Wei Chen & Chong Liu, 2024. "Identifying critical features of iron phosphate particle for lithium preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Zhao & Peng Wang & Yan Wang & Peipei Chao & Honglei Dong, 2023. "Coprecipitation Synthesis and Impedance Studies on Electrode Interface Characteristics of 0.5Li 2 MnO 3 ·0.5Li(Ni 0.44 Mn 0.44 Co 0.12 )O 2 Cathode Material," Energies, MDPI, vol. 16(16), pages 1-16, August.
    2. Wang, WenWei & Yang, Sheng & Lin, Cheng, 2017. "Clay-like mechanical properties for the jellyroll of cylindrical Lithium-ion cells," Applied Energy, Elsevier, vol. 196(C), pages 249-258.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    7. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    8. Wenlin Zhang & Yongqi Zhao & Yu Huo, 2020. "Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries," Energies, MDPI, vol. 13(11), pages 1-13, June.
    9. Xiao Zhu & Tuan K. A. Hoang & Pu Chen, 2017. "Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries," Energies, MDPI, vol. 10(11), pages 1-17, November.
    10. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
    11. Samson Yuxiu Lai & Carmen Cavallo & Muhammad E. Abdelhamid & Fengliu Lou & Alexey Y. Koposov, 2021. "Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance," Energies, MDPI, vol. 14(11), pages 1-24, May.
    12. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    13. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    15. Zeyan Zhou & Taotao Zeng & Haoran Zhang & Ding Chen, 2022. "Mesoporous VCN Nanobelts for High-Performance Flexible Zn-Ion Batteries," Energies, MDPI, vol. 15(13), pages 1-8, July.
    16. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    17. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    20. Ruwani Kaushalya & Poobalasuntharam Iyngaran & Navaratnarajah Kuganathan & Alexander Chroneos, 2019. "Defect, Diffusion and Dopant Properties of NaNiO 2 : Atomistic Simulation Study," Energies, MDPI, vol. 12(16), pages 1-10, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32369-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.