IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32047-z.html
   My bibliography  Save this article

Ammonia for post-healing of formamidinium-based Perovskite films

Author

Listed:
  • Zhipeng Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao Wang

    (Chinese Academy of Sciences)

  • Zaiwei Wang

    (Chinese Academy of Sciences)

  • Zhipeng Shao

    (Chinese Academy of Sciences)

  • Lianzheng Hao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yi Rao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chen Chen

    (Chinese Academy of Sciences)

  • Dachang Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qiangqiang Zhao

    (Chinese Academy of Sciences
    Qingdao University of Science and Technology)

  • Xiuhong Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Caiyun Gao

    (Chinese Academy of Sciences)

  • Bingqian Zhang

    (Chinese Academy of Sciences)

  • Xianzhao Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Li Wang

    (Qingdao University of Science and Technology)

  • Guanglei Cui

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuping Pang

    (Chinese Academy of Sciences)

Abstract

Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.

Suggested Citation

  • Zhipeng Li & Xiao Wang & Zaiwei Wang & Zhipeng Shao & Lianzheng Hao & Yi Rao & Chen Chen & Dachang Liu & Qiangqiang Zhao & Xiuhong Sun & Caiyun Gao & Bingqian Zhang & Xianzhao Wang & Li Wang & Guangle, 2022. "Ammonia for post-healing of formamidinium-based Perovskite films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32047-z
    DOI: 10.1038/s41467-022-32047-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32047-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32047-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Dongqin Bi & Xiong Li & Jovana V. Milić & Dominik J. Kubicki & Norman Pellet & Jingshan Luo & Thomas LaGrange & Pierre Mettraux & Lyndon Emsley & Shaik M. Zakeeruddin & Michael Grätzel, 2018. "Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Jin-Wook Lee & Zhenghong Dai & Tae-Hee Han & Chungseok Choi & Sheng-Yung Chang & Sung-Joon Lee & Nicholas De Marco & Hongxiang Zhao & Pengyu Sun & Yu Huang & Yang Yang, 2018. "2D perovskite stabilized phase-pure formamidinium perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    2. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    4. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    6. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    7. René Itten & Matthias Stucki, 2017. "Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts," Energies, MDPI, vol. 10(7), pages 1-18, June.
    8. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    9. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    10. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    12. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    13. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.
    14. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    16. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    17. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    18. Lee, Dong-Gun & Pandey, Padmini & Parida, Bhaskar & Ryu, Jun & Cho, SungWon & Kim, Jae-Kwang & Kang, Dong-Won, 2022. "Improving inorganic perovskite photovoltaic performance via organic cation addition for efficient solar energy utilization," Energy, Elsevier, vol. 257(C).
    19. Pao-Hsun Huang & Yeong-Her Wang & Jhong-Ciao Ke & Chien-Jung Huang, 2017. "The Effect of Solvents on the Performance of CH 3 NH 3 PbI 3 Perovskite Solar Cells," Energies, MDPI, vol. 10(5), pages 1-8, April.
    20. Marwa. S. Salem & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Adwan Alanazi & Mohammad T. Alshammari & Christian Gontand, 2021. "Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator," Energies, MDPI, vol. 14(18), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32047-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.