IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31824-0.html
   My bibliography  Save this article

Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field

Author

Listed:
  • Hongbin Lei

    (National University of Defense Technology)

  • Jinping Yao

    (Chinese Academy of Sciences)

  • Jing Zhao

    (National University of Defense Technology)

  • Hongqiang Xie

    (Chinese Academy of Sciences
    East China University of Technology)

  • Fangbo Zhang

    (Chinese Academy of Sciences)

  • He Zhang

    (Chinese Academy of Sciences)

  • Ning Zhang

    (Chinese Academy of Sciences)

  • Guihua Li

    (East China Jiaotong University)

  • Qian Zhang

    (National University of Defense Technology)

  • Xiaowei Wang

    (National University of Defense Technology)

  • Yan Yang

    (National University of Defense Technology)

  • Luqi Yuan

    (Shanghai Jiao Tong University)

  • Ya Cheng

    (Chinese Academy of Sciences)

  • Zengxiu Zhao

    (National University of Defense Technology)

Abstract

Supercontinuum (SC) light sources hold versatile applications in many fields ranging from imaging microscopic structural dynamics to achieving frequency comb metrology. Although such broadband light sources are readily accessible in the visible and near infrared regime, the ultraviolet (UV) extension of SC spectrum is still challenging. Here, we demonstrate that the joint contribution of strong field ionization and quantum resonance leads to the unexpected UV continuum radiation spanning the 100 nm bandwidth in molecular nitrogen ions. Quantum coherences in a bunch of ionic levels are found to be created by dynamic Stark-assisted multiphoton resonances following tunneling ionization. We show that the dynamical evolution of the coherence-enhanced polarization wave gives rise to laser-assisted continuum emission inside the laser field and free-induction decay after the laser field, which jointly contribute to the SC generation together with fifth harmonics. As proof of principle, we also show the application of the SC radiation in the absorption spectroscopy. This work offers an alternative scheme for constructing exotic SC sources, and opens up the territory of ionic quantum optics in the strong-field regime.

Suggested Citation

  • Hongbin Lei & Jinping Yao & Jing Zhao & Hongqiang Xie & Fangbo Zhang & He Zhang & Ning Zhang & Guihua Li & Qian Zhang & Xiaowei Wang & Yan Yang & Luqi Yuan & Ya Cheng & Zengxiu Zhao, 2022. "Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31824-0
    DOI: 10.1038/s41467-022-31824-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31824-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31824-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olga Smirnova & Yann Mairesse & Serguei Patchkovskii & Nirit Dudovich & David Villeneuve & Paul Corkum & Misha Yu. Ivanov, 2009. "High harmonic interferometry of multi-electron dynamics in molecules," Nature, Nature, vol. 460(7258), pages 972-977, August.
    2. M. Mitrano & A. Cantaluppi & D. Nicoletti & S. Kaiser & A. Perucchi & S. Lupi & P. Di Pietro & D. Pontiroli & M. Riccò & S. R. Clark & D. Jaksch & A. Cavalleri, 2016. "Possible light-induced superconductivity in K3C60 at high temperature," Nature, Nature, vol. 530(7591), pages 461-464, February.
    3. Ashley P. Fidler & Seth J. Camp & Erika R. Warrick & Etienne Bloch & Hugo J. B. Marroux & Daniel M. Neumark & Kenneth J. Schafer & Mette B. Gaarde & Stephen R. Leone, 2019. "Nonlinear XUV signal generation probed by transient grating spectroscopy with attosecond pulses," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Wang & Guangru Bai & Xiaowei Wang & Jing Zhao & Cheng Gao & Jiacan Wang & Fan Xiao & Wenkai Tao & Pan Song & Qianyu Qiu & Jinlei Liu & Zengxiu Zhao, 2024. "Raman time-delay in attosecond transient absorption of strong-field created krypton vacancy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Jun Nishida & Samuel C. Johnson & Peter T. S. Chang & Dylan M. Wharton & Sven A. Dönges & Omar Khatib & Markus B. Raschke, 2022. "Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. T. P. H. Sidiropoulos & N. Palo & D. E. Rivas & A. Summers & S. Severino & M. Reduzzi & J. Biegert, 2023. "Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Lixin He & Siqi Sun & Pengfei Lan & Yanqing He & Bincheng Wang & Pu Wang & Xiaosong Zhu & Liang Li & Wei Cao & Peixiang Lu & C. D. Lin, 2022. "Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Daniel Z. Haxell & Marco Coraiola & Deividas Sabonis & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheider & Wolfgang Belzig & Juan Carlos Cuevas & Fa, 2023. "Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Peng Chen & Charles Paillard & Hong Jian Zhao & Jorge Íñiguez & Laurent Bellaiche, 2022. "Deterministic control of ferroelectric polarization by ultrafast laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. E. Wang & J. D. Adelinia & M. Chavez-Cervantes & T. Matsuyama & M. Fechner & M. Buzzi & G. Meier & A. Cavalleri, 2023. "Superconducting nonlinear transport in optically driven high-temperature K3C60," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Li Wang & Guangru Bai & Xiaowei Wang & Jing Zhao & Cheng Gao & Jiacan Wang & Fan Xiao & Wenkai Tao & Pan Song & Qianyu Qiu & Jinlei Liu & Zengxiu Zhao, 2024. "Raman time-delay in attosecond transient absorption of strong-field created krypton vacancy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Christian J. Eckhardt & Sambuddha Chattopadhyay & Dante M. Kennes & Eugene A. Demler & Michael A. Sentef & Marios H. Michael, 2024. "Theory of resonantly enhanced photo-induced superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Steven Gassner & Clara S. Weber & Martin Claassen, 2024. "Light-induced switching between singlet and triplet superconducting states," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Peipei Ge & Yankun Dou & Meng Han & Yiqi Fang & Yongkai Deng & Chengyin Wu & Qihuang Gong & Yunquan Liu, 2024. "Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Pengcheng Chen & Dingxin Fan & Annabella Selloni & Emily A. Carter & Craig B. Arnold & Yunlong Zhang & Adam S. Gross & James R. Chelikowsky & Nan Yao, 2023. "Observation of electron orbital signatures of single atoms within metal-phthalocyanines using atomic force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. H. M. Yoo & M. Korkusinski & D. Miravet & K. W. Baldwin & K. West & L. Pfeiffer & P. Hawrylak & R. C. Ashoori, 2023. "Time, momentum, and energy resolved pump-probe tunneling spectroscopy of two-dimensional electron systems," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31824-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.