IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44041-0.html
   My bibliography  Save this article

Orbital perspective on high-harmonic generation from solids

Author

Listed:
  • Álvaro Jiménez-Galán

    (National Research Council of Canada and University of Ottawa
    Max-Born-Institute
    Consejo Superior de Investigaciones Científicas (CSIC))

  • Chandler Bossaer

    (National Research Council of Canada and University of Ottawa
    University of Ottawa)

  • Guilmot Ernotte

    (National Research Council of Canada and University of Ottawa)

  • Andrew M. Parks

    (University of Ottawa)

  • Rui E. F. Silva

    (Consejo Superior de Investigaciones Científicas (CSIC))

  • David M. Villeneuve

    (National Research Council of Canada and University of Ottawa)

  • André Staudte

    (National Research Council of Canada and University of Ottawa)

  • Thomas Brabec

    (University of Ottawa)

  • Adina Luican-Mayer

    (University of Ottawa)

  • Giulio Vampa

    (National Research Council of Canada and University of Ottawa)

Abstract

High-harmonic generation in solids allows probing and controlling electron dynamics in crystals on few femtosecond timescales, paving the way to lightwave electronics. In the spatial domain, recent advances in the real-space interpretation of high-harmonic emission in solids allows imaging the field-free, static, potential of the valence electrons with picometer resolution. The combination of such extreme spatial and temporal resolutions to measure and control strong-field dynamics in solids at the atomic scale is poised to unlock a new frontier of lightwave electronics. Here, we report a strong intensity-dependent anisotropy in the high-harmonic generation from ReS2 that we attribute to angle-dependent interference of currents from the different atoms in the unit cell. Furthermore, we demonstrate how the laser parameters control the relative contribution of these atoms to the high-harmonic emission. Our findings provide an unprecedented atomic perspective on strong-field dynamics in crystals, revealing key factors to consider in the route towards developing efficient harmonic emitters.

Suggested Citation

  • Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44041-0
    DOI: 10.1038/s41467-023-44041-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44041-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44041-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olga Smirnova & Yann Mairesse & Serguei Patchkovskii & Nirit Dudovich & David Villeneuve & Paul Corkum & Misha Yu. Ivanov, 2009. "High harmonic interferometry of multi-electron dynamics in molecules," Nature, Nature, vol. 460(7258), pages 972-977, August.
    2. T. T. Luu & M. Garg & S. Yu. Kruchinin & A. Moulet & M. Th. Hassan & E. Goulielmakis, 2015. "Extreme ultraviolet high-harmonic spectroscopy of solids," Nature, Nature, vol. 521(7553), pages 498-502, May.
    3. H. Lakhotia & H. Y. Kim & M. Zhan & S. Hu & S. Meng & E. Goulielmakis, 2020. "Laser picoscopy of valence electrons in solids," Nature, Nature, vol. 583(7814), pages 55-59, July.
    4. F. Langer & M. Hohenleutner & C. P. Schmid & C. Poellmann & P. Nagler & T. Korn & C. Schüller & M. S. Sherwin & U. Huttner & J. T. Steiner & S. W. Koch & M. Kira & R. Huber, 2016. "Lightwave-driven quasiparticle collisions on a subcycle timescale," Nature, Nature, vol. 533(7602), pages 225-229, May.
    5. Sefaattin Tongay & Hasan Sahin & Changhyun Ko & Alex Luce & Wen Fan & Kai Liu & Jian Zhou & Ying-Sheng Huang & Ching-Hwa Ho & Jinyuan Yan & D. Frank Ogletree & Shaul Aloni & Jie Ji & Shushen Li & Jing, 2014. "Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    6. Georges Ndabashimiye & Shambhu Ghimire & Mengxi Wu & Dana A. Browne & Kenneth J. Schafer & Mette B. Gaarde & David A. Reis, 2016. "Solid-state harmonics beyond the atomic limit," Nature, Nature, vol. 534(7608), pages 520-523, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvianne D. C. Roscam Abbing & Nataliia Kuzkova & Roy Linden & Filippo Campi & Brian Keijzer & Corentin Morice & Zhuang-Yan Zhang & Maarten L. S. Geest & Peter M. Kraus, 2024. "Enhancing the efficiency of high-order harmonics with two-color non-collinear wave mixing in silica," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Soonyoung Cha & Minjeong Kim & Youngjae Kim & Shinyoung Choi & Sejong Kang & Hoon Kim & Sangho Yoon & Gunho Moon & Taeho Kim & Ye Won Lee & Gil Young Cho & Moon Jeong Park & Cheol-Joo Kim & B. J. Kim , 2022. "Gate-tunable quantum pathways of high harmonic generation in graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. M. Ossiander & K. Golyari & K. Scharl & L. Lehnert & F. Siegrist & J. P. Bürger & D. Zimin & J. A. Gessner & M. Weidman & I. Floss & V. Smejkal & S. Donsa & C. Lemell & F. Libisch & N. Karpowicz & J. , 2022. "The speed limit of optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Victor Chang Lee & Lun Yue & Mette B. Gaarde & Yang-hao Chan & Diana Y. Qiu, 2024. "Many-body enhancement of high-harmonic generation in monolayer MoS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Jan Reislöhner & Doyeong Kim & Ihar Babushkin & Adrian N. Pfeiffer, 2022. "Onset of Bloch oscillations in the almost-strong-field regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yang-Yang Lv & Jinlong Xu & Shuang Han & Chi Zhang & Yadong Han & Jian Zhou & Shu-Hua Yao & Xiao-Ping Liu & Ming-Hui Lu & Hongming Weng & Zhenda Xie & Y. B. Chen & Jianbo Hu & Yan-Feng Chen & Shining , 2021. "High-harmonic generation in Weyl semimetal β-WP2 crystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Shidong Yang & Xiwang Liu & Jinyan Lin & Ruixin Zuo & Xiaohong Song & Marcelo Ciappina & Weifeng Yang, 2022. "Reconstructing the Semiconductor Band Structure by Deep Learning," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    9. Lixin He & Siqi Sun & Pengfei Lan & Yanqing He & Bincheng Wang & Pu Wang & Xiaosong Zhu & Liang Li & Wei Cao & Peixiang Lu & C. D. Lin, 2022. "Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Enrico Ridente & Mikhail Mamaikin & Najd Altwaijry & Dmitry Zimin & Matthias F. Kling & Vladimir Pervak & Matthew Weidman & Ferenc Krausz & Nicholas Karpowicz, 2022. "Electro-optic characterization of synthesized infrared-visible light fields," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Li Wang & Guangru Bai & Xiaowei Wang & Jing Zhao & Cheng Gao & Jiacan Wang & Fan Xiao & Wenkai Tao & Pan Song & Qianyu Qiu & Jinlei Liu & Zengxiu Zhao, 2024. "Raman time-delay in attosecond transient absorption of strong-field created krypton vacancy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Rostad Sæther, Simen, 2022. "Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 144-159.
    14. Peipei Ge & Yankun Dou & Meng Han & Yiqi Fang & Yongkai Deng & Chengyin Wu & Qihuang Gong & Yunquan Liu, 2024. "Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Pengcheng Chen & Dingxin Fan & Annabella Selloni & Emily A. Carter & Craig B. Arnold & Yunlong Zhang & Adam S. Gross & James R. Chelikowsky & Nan Yao, 2023. "Observation of electron orbital signatures of single atoms within metal-phthalocyanines using atomic force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Hongbin Lei & Jinping Yao & Jing Zhao & Hongqiang Xie & Fangbo Zhang & He Zhang & Ning Zhang & Guihua Li & Qian Zhang & Xiaowei Wang & Yan Yang & Luqi Yuan & Ya Cheng & Zengxiu Zhao, 2022. "Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Ruijin Sun & Jun Deng & Xiaowei Wu & Munan Hao & Ke Ma & Yuxin Ma & Changchun Zhao & Dezhong Meng & Xiaoyu Ji & Yiyang Ding & Yu Pang & Xin Qian & Ronggui Yang & Guodong Li & Zhilin Li & Linjie Dai & , 2023. "High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44041-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.