IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31558-z.html
   My bibliography  Save this article

Albedo changes caused by future urbanization contribute to global warming

Author

Listed:
  • Zutao Ouyang

    (Stanford University
    Michigan State University)

  • Pietro Sciusco

    (Michigan State University)

  • Tong Jiao

    (Clark University)

  • Sarah Feron

    (Stanford University
    University of Groningen
    University of Santiago)

  • Cheyenne Lei

    (Michigan State University)

  • Fei Li

    (Grassland Research Institute, Chinese Academy of Agricultural Sciences)

  • Ranjeet John

    (University of South Dakota)

  • Peilei Fan

    (Michigan State University)

  • Xia Li

    (East China Normal University)

  • Christopher A. Williams

    (Clark University)

  • Guangzhao Chen

    (The University of Hong Kong
    The Chinese University of Hong Kong)

  • Chenghao Wang

    (Stanford University)

  • Jiquan Chen

    (Michigan State University)

Abstract

The replacement of natural lands with urban structures has multiple environmental consequences, yet little is known about the magnitude and extent of albedo-induced warming contributions from urbanization at the global scale in the past and future. Here, we apply an empirical approach to quantify the climate effects of past urbanization and future urbanization projected under different shared socioeconomic pathways (SSPs). We find an albedo-induced warming effect of urbanization for both the past and the projected futures under three illustrative scenarios. The albedo decease from urbanization in 2018 relative to 2001 has yielded a 100-year average annual global warming of 0.00014 [0.00008, 0.00021] °C. Without proper mitigation, future urbanization in 2050 relative to 2018 and that in 2100 relative to 2018 under the intermediate emission scenario (SSP2-4.5) would yield a 100-year average warming effect of 0.00107 [0.00057,0.00179] °C and 0.00152 [0.00078,0.00259] °C, respectively, through altering the Earth’s albedo.

Suggested Citation

  • Zutao Ouyang & Pietro Sciusco & Tong Jiao & Sarah Feron & Cheyenne Lei & Fei Li & Ranjeet John & Peilei Fan & Xia Li & Christopher A. Williams & Guangzhao Chen & Chenghao Wang & Jiquan Chen, 2022. "Albedo changes caused by future urbanization contribute to global warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31558-z
    DOI: 10.1038/s41467-022-31558-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31558-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31558-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tong Jiao & Christopher A. Williams & Bardan Ghimire & Jeffrey Masek & Feng Gao & Crystal Schaaf, 2017. "Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation," Climatic Change, Springer, vol. 142(3), pages 463-476, June.
    2. Xia Li & Guangzhao Chen & Xiaoping Liu & Xun Liang & Shaojian Wang & Yimin Chen & Fengsong Pei & Xiaocong Xu, 2017. "A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(5), pages 1040-1059, September.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Xiaoping Liu & Fengsong Pei & Youyue Wen & Xia Li & Shaojian Wang & Changjiang Wu & Yiling Cai & Jianguo Wu & Jun Chen & Kuishuang Feng & Junguo Liu & Klaus Hubacek & Steven J. Davis & Wenping Yuan & , 2019. "Global urban expansion offsets climate-driven increases in terrestrial net primary productivity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    6. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    8. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liangkan & Chen, Mingxing & Zhang, Xiaoping & Xian, Yue, 2024. "Evaluating inequality divides in urban development intensity between the Global North and South," Land Use Policy, Elsevier, vol. 145(C).
    2. Junzhou Yu & Wenzheng Hu & Ting Deng, 2024. "Towards more resilient economy—analyzing the impact of new-type urbanization on urban economic resilience: mechanisms and spatial spillover boundaries," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-41, October.
    3. Annan Chen & Chuanfeng Zhao & Haotian Zhang & Yikun Yang & Jiefeng Li, 2024. "Surface albedo regulates aerosol direct climate effect," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Serena Monticelli & Alex Talbot & Philipp Gotico & Fabien Caillé & Olivier Loreau & Antonio Vecchio & Augustin Malandain & Antoine Sallustrau & Winfried Leibl & Ally Aukauloo & Frédéric Taran & Zakari, 2023. "Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuzheng Li & Xiaoqin Cheng & Hairong Han, 2020. "Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    2. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    3. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Kikuko Shoyama, 2021. "Assessment of Land-Use Scenarios at a National Scale Using Intensity Analysis and Figure of Merit Components," Land, MDPI, vol. 10(4), pages 1-13, April.
    5. Milne, Russell & Anand, Madhur & Bauch, Chris T., 2023. "Preparing for and managing crown-of-thorns starfish outbreaks on reefs under threat from interacting anthropogenic stressors," Ecological Modelling, Elsevier, vol. 484(C).
    6. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Bo Sun & Derek T. Robinson, 2018. "Comparison of Statistical Approaches for Modelling Land-Use Change," Land, MDPI, vol. 7(4), pages 1-33, November.
    8. Jian Zhou & Shan Jiang & Sanjit Kumar Mondal & Jinlong Huang & Buda Su & Zbigniew W. Kundzewicz & Ziyan Chen & Runhong Xu & Tong Jiang, 2022. "China’s Socioeconomic and CO 2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    9. TC Chakraborty & Zander S. Venter & Matthias Demuzere & Wenfeng Zhan & Jing Gao & Lei Zhao & Yun Qian, 2024. "Large disagreements in estimates of urban land across scales and their implications," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Darshana Athukorala & Ronald C. Estoque & Yuji Murayama & Bunkei Matsushita, 2021. "Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    12. Jinyao Lin & Tongli Chen & Qiazi Han, 2018. "Simulating and Predicting the Impacts of Light Rail Transit Systems on Urban Land Use by Using Cellular Automata: A Case Study of Dongguan, China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    13. Shengbiao Wu & Bin Chen & Chris Webster & Bing Xu & Peng Gong, 2023. "Improved human greenspace exposure equality during 21st century urbanization," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Liu, Xiaoping & Ou, Jinpei & Chen, Yimin & Wang, Shaojian & Li, Xia & Jiao, Limin & Liu, Yaolin, 2019. "Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures," Applied Energy, Elsevier, vol. 238(C), pages 1163-1178.
    15. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    16. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    17. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    18. Remme, Roy P. & Meacham, Megan & Pellowe, Kara E. & Andersson, Erik & Guerry, Anne D. & Janke, Benjamin & Liu, Lingling & Lonsdorf, Eric & Li, Meng & Mao, Yuanyuan & Nootenboom, Christopher & Wu, Tong, 2024. "Aligning nature-based solutions with ecosystem services in the urban century," Ecosystem Services, Elsevier, vol. 66(C).
    19. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    20. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31558-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.