IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7843d10.1038_s41586-020-03138-y.html
   My bibliography  Save this article

Global and regional drivers of land-use emissions in 1961–2017

Author

Listed:
  • Chaopeng Hong

    (University of California, Irvine)

  • Jennifer A. Burney

    (University of California, San Diego)

  • Julia Pongratz

    (Ludwig-Maximilians-Universität
    Max Planck Institute for Meteorology)

  • Julia E. M. S. Nabel

    (Max Planck Institute for Meteorology)

  • Nathaniel D. Mueller

    (Colorado State University
    Colorado State University)

  • Robert B. Jackson

    (Stanford University
    Stanford University
    Stanford University)

  • Steven J. Davis

    (University of California, Irvine
    University of California, Irvine)

Abstract

Historically, human uses of land have transformed and fragmented ecosystems1,2, degraded biodiversity3,4, disrupted carbon and nitrogen cycles5,6 and added prodigious quantities of greenhouse gases (GHGs) to the atmosphere7,8. However, in contrast to fossil-fuel carbon dioxide (CO2) emissions, trends and drivers of GHG emissions from land management and land-use change (together referred to as ‘land-use emissions’) have not been as comprehensively and systematically assessed. Here we present country-, process-, GHG- and product-specific inventories of global land-use emissions from 1961 to 2017, we decompose key demographic, economic and technical drivers of emissions and we assess the uncertainties and the sensitivity of results to different accounting assumptions. Despite steady increases in population (+144 per cent) and agricultural production per capita (+58 per cent), as well as smaller increases in emissions per land area used (+8 per cent), decreases in land required per unit of agricultural production (–70 per cent) kept global annual land-use emissions relatively constant at about 11 gigatonnes CO2-equivalent until 2001. After 2001, driven by rising emissions per land area, emissions increased by 2.4 gigatonnes CO2-equivalent per decade to 14.6 gigatonnes CO2-equivalent in 2017 (about 25 per cent of total anthropogenic GHG emissions). Although emissions intensity decreased in all regions, large differences across regions persist over time. The three highest-emitting regions (Latin America, Southeast Asia and sub-Saharan Africa) dominate global emissions growth from 1961 to 2017, driven by rapid and extensive growth of agricultural production and related land-use change. In addition, disproportionate emissions are related to certain products: beef and a few other red meats supply only 1 per cent of calories worldwide, but account for 25 per cent of all land-use emissions. Even where land-use change emissions are negligible or negative, total per capita CO2-equivalent land-use emissions remain near 0.5 tonnes per capita, suggesting the current frontier of mitigation efforts. Our results are consistent with existing knowledge—for example, on the role of population and economic growth and dietary choice—but provide additional insight into regional and sectoral trends.

Suggested Citation

  • Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7843:d:10.1038_s41586-020-03138-y
    DOI: 10.1038/s41586-020-03138-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03138-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03138-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    3. Lagerquist, Elsa & Vogeler, Iris & Kumar, Uttam & Bergkvist, Göran & Lana, Marcos & Watson, Christine A. & Parsons, David, 2024. "Assessing the effect of intercropped leguminous service crops on main crops and soil processes using APSIM NG," Agricultural Systems, Elsevier, vol. 216(C).
    4. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.
    5. Foyuan Kuang & Jiatong Li & Jianjun Jin & Xin Qiu, 2023. "Do Green Production Technologies Improve Household Income? Evidence from Rice Farmers in China," Land, MDPI, vol. 12(10), pages 1-15, September.
    6. Zutao Ouyang & Pietro Sciusco & Tong Jiao & Sarah Feron & Cheyenne Lei & Fei Li & Ranjeet John & Peilei Fan & Xia Li & Christopher A. Williams & Guangzhao Chen & Chenghao Wang & Jiquan Chen, 2022. "Albedo changes caused by future urbanization contribute to global warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Xie, Hualin & Huang, Yingqian, 2021. "Influencing factors of farmers' adoption of pro-environmental agricultural technologies in China: Meta-analysis," Land Use Policy, Elsevier, vol. 109(C).
    8. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    9. Min Liu & Yinrong Chen & Kun Chen & Yi Chen, 2023. "Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    10. Wu, Jishi & Jia, Peng & Feng, Tao & Li, Haijiang & Kuang, Haibo & Zhang, Junyi, 2023. "Uncovering the spatiotemporal impacts of built environment on traffic carbon emissions using multi-source big data," Land Use Policy, Elsevier, vol. 129(C).
    11. Yue Qin & Chaopeng Hong & Hongyan Zhao & Stefan Siebert & John T. Abatzoglou & Laurie S. Huning & Lindsey L. Sloat & Sohyun Park & Shiyu Li & Darla K. Munroe & Tong Zhu & Steven J. Davis & Nathaniel D, 2022. "Snowmelt risk telecouplings for irrigated agriculture," Nature Climate Change, Nature, vol. 12(11), pages 1007-1015, November.
    12. Lei Chang & Tianhang Ju & Huijia Liu & Yuefen Li, 2024. "The Contribution of Saline-Alkali Land to the Terrestrial Carbon Stock Balance: The Case of an Important Agriculture and Ecological Region in Northeast China," Land, MDPI, vol. 13(7), pages 1-18, June.
    13. Guste Metrikaityte & Jurate Suziedelyte Visockiene & Kestutis Papsys, 2022. "Digital Mapping of Land Cover Changes Using the Fusion of SAR and MSI Satellite Data," Land, MDPI, vol. 11(7), pages 1-20, July.
    14. Pan, Hengyu & Zheng, Xiangyu & Wu, Rui & Liu, Xincong & Xiao, Shijiang & Sun, Lu & Hu, Tianzi & Gao, Ziyan & Yang, Liping & Huang, Chengyi & Zhang, Xiaohong & Deng, Shihuai & Xiao, Yinlong, 2024. "Agriculture related methane emissions embodied in China's interprovincial trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Gingrich, Simone & Lauk, Christian & Krausmann, Fridolin & Erb, Karl-Heinz & Le Noë, Julia, 2021. "Changes in energy and livestock systems largely explain the forest transition in Austria (1830–1910)," Land Use Policy, Elsevier, vol. 109(C).
    17. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    18. Jian Li & Lingyan Jiang & Shuhua Zhang, 2024. "How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China," Land, MDPI, vol. 13(9), pages 1-17, August.
    19. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    20. Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    21. Camila Bonilla-Cedrez & Peter Steward & Todd S. Rosenstock & Philip Thornton & Jacobo Arango & Martin Kropff & Julian Ramirez-Villegas, 2023. "Priority areas for investment in more sustainable and climate-resilient livestock systems," Nature Sustainability, Nature, vol. 6(10), pages 1279-1286, October.
    22. Song, Youcheng & Wang, Haijun & Peng, Xiaotao & Sun, Duan & Chen, Rui, 2023. "Modeling land use change prediction using multi-model fusion techniques: A case study in the Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 486(C).
    23. Long Li & Wei Fu & Mingcan Luo, 2022. "Spatial and Temporal Variation and Prediction of Ecosystem Carbon Stocks in Yunnan Province Based on Land Use Change," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    24. Jingxiu Qin & Weili Duan & Shan Zou & Yaning Chen & Wenjing Huang & Lorenzo Rosa, 2024. "Global energy use and carbon emissions from irrigated agriculture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    25. Jia-Li Zhong & Wei Qi & Min Dong & Meng-Han Xu & Jia-Yu Zhang & Yi-Xiao Xu & Zi-Jie Zhou, 2022. "Land Use Carbon Emission Measurement and Risk Zoning under the Background of the Carbon Peak: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7843:d:10.1038_s41586-020-03138-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.