IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31298-0.html
   My bibliography  Save this article

Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators

Author

Listed:
  • Andrea Ronchi

    (Università Cattolica del Sacro Cuore
    KU Leuven
    Università Cattolica del Sacro Cuore
    Pirelli Tyre S.p.A)

  • Paolo Franceschini

    (Università Cattolica del Sacro Cuore
    KU Leuven
    Università Cattolica del Sacro Cuore
    CNR-INO (National Institute of Optics))

  • Andrea Poli

    (Università Cattolica del Sacro Cuore
    Università Cattolica del Sacro Cuore
    Scuola Internazionale Superiore di Studi Avanzati (SISSA))

  • Pía Homm

    (KU Leuven)

  • Ann Fitzpatrick

    (Diamond Light Source)

  • Francesco Maccherozzi

    (Diamond Light Source)

  • Gabriele Ferrini

    (Università Cattolica del Sacro Cuore
    Università Cattolica del Sacro Cuore)

  • Francesco Banfi

    (Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière)

  • Sarnjeet S. Dhesi

    (Diamond Light Source)

  • Mariela Menghini

    (KU Leuven
    IMDEA Nanociencia)

  • Michele Fabrizio

    (Scuola Internazionale Superiore di Studi Avanzati (SISSA))

  • Jean-Pierre Locquet

    (KU Leuven)

  • Claudio Giannetti

    (Università Cattolica del Sacro Cuore
    Università Cattolica del Sacro Cuore)

Abstract

Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.

Suggested Citation

  • Andrea Ronchi & Paolo Franceschini & Andrea Poli & Pía Homm & Ann Fitzpatrick & Francesco Maccherozzi & Gabriele Ferrini & Francesco Banfi & Sarnjeet S. Dhesi & Mariela Menghini & Michele Fabrizio & J, 2022. "Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31298-0
    DOI: 10.1038/s41467-022-31298-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31298-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31298-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flavio Giorgianni & Joe Sakai & Stefano Lupi, 2019. "Overcoming the thermal regime for the electric-field driven Mott transition in vanadium sesquioxide," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    2. S. Lupi & L. Baldassarre & B. Mansart & A. Perucchi & A. Barinov & P. Dudin & E. Papalazarou & F. Rodolakis & J. -P. Rueff & J. -P. Itié & S. Ravy & D. Nicoletti & P. Postorino & P. Hansmann & N. Parr, 2010. "A microscopic view on the Mott transition in chromium-doped V2O3," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    3. Yoav Kalcheim & Alberto Camjayi & Javier Valle & Pavel Salev & Marcelo Rozenberg & Ivan K. Schuller, 2020. "Non-thermal resistive switching in Mott insulator nanowires," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. J.B. Fouet & P. Sindzingre & C. Lhuillier, 2001. "An investigation of the quantum J 1 - J 2 - J 3 model on the honeycomb lattice," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(2), pages 241-254, March.
    5. G. Lantz & B. Mansart & D. Grieger & D. Boschetto & N. Nilforoushan & E. Papalazarou & N. Moisan & L. Perfetti & V. L. R. Jacques & D. Le Bolloc'h & C. Laulhé & S. Ravy & J-P Rueff & T. E. Glover & M., 2017. "Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    6. Jan Gerrit Horstmann & Hannes Böckmann & Bareld Wit & Felix Kurtz & Gero Storeck & Claus Ropers, 2020. "Coherent control of a surface structural phase transition," Nature, Nature, vol. 583(7815), pages 232-236, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Milloch & Ignacio Figueruelo-Campanero & Wei-Fan Hsu & Selene Mor & Simon Mellaerts & Francesco Maccherozzi & Larissa S. I. Veiga & Sarnjeet S. Dhesi & Mauro Spera & Jin Won Seo & Jean-Pier, 2024. "Mott resistive switching initiated by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandra Milloch & Ignacio Figueruelo-Campanero & Wei-Fan Hsu & Selene Mor & Simon Mellaerts & Francesco Maccherozzi & Larissa S. I. Veiga & Sarnjeet S. Dhesi & Mauro Spera & Jin Won Seo & Jean-Pier, 2024. "Mott resistive switching initiated by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Jong E. Han & Camille Aron & Xi Chen & Ishiaka Mansaray & Jae-Ho Han & Ki-Seok Kim & Michael Randle & Jonathan P. Bird, 2023. "Correlated insulator collapse due to quantum avalanche via in-gap ladder states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Matteo Lucchini & Fabio Medeghini & Yingxuan Wu & Federico Vismarra & Rocío Borrego-Varillas & Aurora Crego & Fabio Frassetto & Luca Poletto & Shunsuke A. Sato & Hannes Hübener & Umberto Giovannini & , 2022. "Controlling Floquet states on ultrashort time scales," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Dohyun Kim & Eui-Cheol Shin & Yongjoon Lee & Young Hee Lee & Mali Zhao & Yong-Hyun Kim & Heejun Yang, 2022. "Atomic-scale thermopower in charge density wave states," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Qiaomei Liu & Dong Wu & Tianyi Wu & Shanshan Han & Yiran Peng & Zhihong Yuan & Yihan Cheng & Bohan Li & Tianchen Hu & Li Yue & Shuxiang Xu & Ruoxuan Ding & Ming Lu & Rongsheng Li & Sijie Zhang & Baiqi, 2024. "Room-temperature non-volatile optical manipulation of polar order in a charge density wave," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31298-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.