IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms13917.html
   My bibliography  Save this article

Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material

Author

Listed:
  • G. Lantz

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
    Institute for Quantum Electronics, ETH Zürich)

  • B. Mansart

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • D. Grieger

    (International School for Advanced Studies SISSA)

  • D. Boschetto

    (LOA, ENSTA, CNRS, Ecole Polytechnique)

  • N. Nilforoushan

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • E. Papalazarou

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • N. Moisan

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • L. Perfetti

    (Laboratoire des Solides Irradiés, Ecole Polytechnique-CEA/SSM-CNRS UMR 7642)

  • V. L. R. Jacques

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • D. Le Bolloc'h

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

  • C. Laulhé

    (Synchrotron SOLEIL, L’Orme des Merisiers
    University Paris-Sud, Université Paris-Saclay)

  • S. Ravy

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay
    Synchrotron SOLEIL, L’Orme des Merisiers)

  • J-P Rueff

    (Synchrotron SOLEIL, L’Orme des Merisiers
    Sorbonne Université, UPMC Univ. Paris 06, CNRS UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement)

  • T. E. Glover

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • M. P. Hertlein

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • Z. Hussain

    (Advanced Light Source, Lawrence Berkeley National Laboratory)

  • S. Song

    (LCLS, SLAC National Accelerator Laboratory)

  • M. Chollet

    (LCLS, SLAC National Accelerator Laboratory)

  • M. Fabrizio

    (International School for Advanced Studies SISSA)

  • M. Marsi

    (Laboratoire de Physique des Solides, CNRS, University Paris-Sud, Université Paris-Saclay)

Abstract

The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott–Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron–lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

Suggested Citation

  • G. Lantz & B. Mansart & D. Grieger & D. Boschetto & N. Nilforoushan & E. Papalazarou & N. Moisan & L. Perfetti & V. L. R. Jacques & D. Le Bolloc'h & C. Laulhé & S. Ravy & J-P Rueff & T. E. Glover & M., 2017. "Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13917
    DOI: 10.1038/ncomms13917
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13917
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Ronchi & Paolo Franceschini & Andrea Poli & Pía Homm & Ann Fitzpatrick & Francesco Maccherozzi & Gabriele Ferrini & Francesco Banfi & Sarnjeet S. Dhesi & Mariela Menghini & Michele Fabrizio & J, 2022. "Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.