IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38557-8.html
   My bibliography  Save this article

Correlated insulator collapse due to quantum avalanche via in-gap ladder states

Author

Listed:
  • Jong E. Han

    (State University of New York at Buffalo)

  • Camille Aron

    (Université Paris Cité
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Xi Chen

    (State University of New York at Buffalo)

  • Ishiaka Mansaray

    (State University of New York at Buffalo)

  • Jae-Ho Han

    (Institute for Basic Science(IBS))

  • Ki-Seok Kim

    (POSTECH)

  • Michael Randle

    (State University of New York at Buffalo)

  • Jonathan P. Bird

    (State University of New York at Buffalo
    State University of New York at Buffalo)

Abstract

The significant discrepancy observed between the predicted and experimental switching fields in correlated insulators under a DC electric field far-from-equilibrium necessitates a reevaluation of current microscopic understanding. Here we show that an electron avalanche can occur in the bulk limit of such insulators at arbitrarily small electric field by introducing a generic model of electrons coupled to an inelastic medium of phonons. The quantum avalanche arises by the generation of a ladder of in-gap states, created by a multi-phonon emission process. Hot-phonons in the avalanche trigger a premature and partial collapse of the correlated gap. The phonon spectrum dictates the existence of two-stage versus single-stage switching events which we associate with charge-density-wave and Mott resistive phase transitions, respectively. The behavior of electron and phonon temperatures, as well as the temperature dependence of the threshold fields, demonstrates how a crossover between the thermal and quantum switching scenarios emerges within a unified framework of the quantum avalanche.

Suggested Citation

  • Jong E. Han & Camille Aron & Xi Chen & Ishiaka Mansaray & Jae-Ho Han & Ki-Seok Kim & Michael Randle & Jonathan P. Bird, 2023. "Correlated insulator collapse due to quantum avalanche via in-gap ladder states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38557-8
    DOI: 10.1038/s41467-023-38557-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38557-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38557-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Guiot & L. Cario & E. Janod & B. Corraze & V. Ta Phuoc & M. Rozenberg & P. Stoliar & T. Cren & D. Roditchev, 2013. "Avalanche breakdown in GaTa4Se8−xTex narrow-gap Mott insulators," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    2. Flavio Giorgianni & Joe Sakai & Stefano Lupi, 2019. "Overcoming the thermal regime for the electric-field driven Mott transition in vanadium sesquioxide," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hualiang Lv & Yuxing Yao & Mingyue Yuan & Guanyu Chen & Yuchao Wang & Longjun Rao & Shucong Li & Ufuoma I. Kara & Robert L. Dupont & Cheng Zhang & Boyuan Chen & Bo Liu & Xiaodi Zhou & Renbing Wu & Sol, 2024. "Functional nanoporous graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Andrea Ronchi & Paolo Franceschini & Andrea Poli & Pía Homm & Ann Fitzpatrick & Francesco Maccherozzi & Gabriele Ferrini & Francesco Banfi & Sarnjeet S. Dhesi & Mariela Menghini & Michele Fabrizio & J, 2022. "Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38557-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.