IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31087-9.html
   My bibliography  Save this article

Compact light field photography towards versatile three-dimensional vision

Author

Listed:
  • Xiaohua Feng

    (Zhejiang Laboratory)

  • Yayao Ma

    (University of California)

  • Liang Gao

    (University of California)

Abstract

Inspired by natural living systems, modern cameras can attain three-dimensional vision via multi-view geometry like compound eyes in flies, or time-of-flight sensing like echolocation in bats. However, high-speed, accurate three-dimensional sensing capable of scaling over an extensive distance range and coping well with severe occlusions remains challenging. Here, we report compact light field photography for acquiring large-scale light fields with simple optics and a small number of sensors in arbitrary formats ranging from two-dimensional area to single-point detectors, culminating in a dense multi-view measurement with orders of magnitude lower dataload. We demonstrated compact light field photography for efficient multi-view acquisition of time-of-flight signals to enable snapshot three-dimensional imaging with an extended depth range and through severe scene occlusions. Moreover, we show how compact light field photography can exploit curved and disconnected surfaces for real-time non-line-of-sight 3D vision. Compact light field photography will broadly benefit high-speed 3D imaging and open up new avenues in various disciplines.

Suggested Citation

  • Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31087-9
    DOI: 10.1038/s41467-022-31087-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31087-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31087-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Rapp & Charles Saunders & Julián Tachella & John Murray-Bruce & Yoann Altmann & Jean-Yves Tourneret & Stephen McLaughlin & Robin M. A. Dawson & Franco N. C. Wong & Vivek K. Goyal, 2020. "Seeing around corners with edge-resolved transient imaging," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Christopher Rogers & Alexander Y. Piggott & David J. Thomson & Robert F. Wiser & Ion E. Opris & Steven A. Fortune & Andrew J. Compston & Alexander Gondarenko & Fanfan Meng & Xia Chen & Graham T. Reed , 2021. "A universal 3D imaging sensor on a silicon photonics platform," Nature, Nature, vol. 590(7845), pages 256-261, February.
    3. Xiaohua Feng & Liang Gao, 2021. "Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. D. J. Brady & M. E. Gehm & R. A. Stack & D. L. Marks & D. S. Kittle & D. R. Golish & E. M. Vera & S. D. Feller, 2012. "Multiscale gigapixel photography," Nature, Nature, vol. 486(7403), pages 386-389, June.
    5. Johann Riemensberger & Anton Lukashchuk & Maxim Karpov & Wenle Weng & Erwan Lucas & Junqiu Liu & Tobias J. Kippenberg, 2020. "Massively parallel coherent laser ranging using a soliton microcomb," Nature, Nature, vol. 581(7807), pages 164-170, May.
    6. Matthew O’Toole & David B. Lindell & Gordon Wetzstein, 2018. "Confocal non-line-of-sight imaging based on the light-cone transform," Nature, Nature, vol. 555(7696), pages 338-341, March.
    7. Charles Saunders & John Murray-Bruce & Vivek K Goyal, 2019. "Computational periscopy with an ordinary digital camera," Nature, Nature, vol. 565(7740), pages 472-475, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson Czajkowski & John Murray-Bruce, 2024. "Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Sheila Seidel & Hoover Rueda-Chacón & Iris Cusini & Federica Villa & Franco Zappa & Christopher Yu & Vivek K Goyal, 2023. "Non-line-of-sight snapshots and background mapping with an active corner camera," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Tian Shi & Liangsheng Li & He Cai & Xianli Zhu & Qingfan Shi & Ning Zheng, 2022. "Computational imaging of moving objects obscured by a random corridor via speckle correlations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ji Hyun Nam & Eric Brandt & Sebastian Bauer & Xiaochun Liu & Marco Renna & Alberto Tosi & Eftychios Sifakis & Andreas Velten, 2021. "Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Florian Willomitzer & Prasanna V. Rangarajan & Fengqiang Li & Muralidhar M. Balaji & Marc P. Christensen & Oliver Cossairt, 2021. "Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Xintong Liu & Jianyu Wang & Leping Xiao & Zuoqiang Shi & Xing Fu & Lingyun Qiu, 2023. "Non-line-of-sight imaging with arbitrary illumination and detection pattern," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Phillip S. Blakey & Han Liu & Georgios Papangelakis & Yutian Zhang & Zacharie M. Léger & Meng Lon Iu & Amr S. Helmy, 2022. "Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Grigory Lihachev & Wenle Weng & Junqiu Liu & Lin Chang & Joel Guo & Jijun He & Rui Ning Wang & Miles H. Anderson & Yang Liu & John E. Bowers & Tobias J. Kippenberg, 2022. "Platicon microcomb generation using laser self-injection locking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Md Sadman Sakib Rahman & Tianyi Gan & Emir Arda Deger & Çağatay Işıl & Mona Jarrahi & Aydogan Ozcan, 2023. "Learning diffractive optical communication around arbitrary opaque occlusions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31087-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.