IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22461-0.html
   My bibliography  Save this article

Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging

Author

Listed:
  • Xiaohua Feng

    (University of California)

  • Liang Gao

    (University of California
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Cameras with extreme speeds are enabling technologies in both fundamental and applied sciences. However, existing ultrafast cameras are incapable of coping with extended three-dimensional scenes and fall short for non-line-of-sight imaging, which requires a long sequence of time-resolved two-dimensional data. Current non-line-of-sight imagers, therefore, need to perform extensive scanning in the spatial and/or temporal dimension, restricting their use in imaging only static or slowly moving objects. To address these long-standing challenges, we present here ultrafast light field tomography (LIFT), a transient imaging strategy that offers a temporal sequence of over 1000 and enables highly efficient light field acquisition, allowing snapshot acquisition of the complete four-dimensional space and time. With LIFT, we demonstrated three-dimensional imaging of light in flight phenomena with a

Suggested Citation

  • Xiaohua Feng & Liang Gao, 2021. "Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22461-0
    DOI: 10.1038/s41467-021-22461-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22461-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22461-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohua Feng & Yayao Ma & Liang Gao, 2022. "Compact light field photography towards versatile three-dimensional vision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22461-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.