IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v505y2014i7482d10.1038_nature12879.html
   My bibliography  Save this article

Patterning and growth control by membrane-tethered Wingless

Author

Listed:
  • Cyrille Alexandre

    (MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK)

  • Alberto Baena-Lopez

    (MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK)

  • Jean-Paul Vincent

    (MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK)

Abstract

Wnts are evolutionarily conserved secreted signalling proteins that, in various developmental contexts, spread from their site of synthesis to form a gradient and activate target-gene expression at a distance. However, the requirement for Wnts to spread has never been directly tested. Here we used genome engineering to replace the endogenous wingless gene, which encodes the main Drosophila Wnt, with one that expresses a membrane-tethered form of the protein. Surprisingly, the resulting flies were viable and produced normally patterned appendages of nearly the right size, albeit with a delay. We show that, in the prospective wing, prolonged wingless transcription followed by memory of earlier signalling allows persistent expression of relevant target genes. We suggest therefore that the spread of Wingless is dispensable for patterning and growth even though it probably contributes to increasing cell proliferation.

Suggested Citation

  • Cyrille Alexandre & Alberto Baena-Lopez & Jean-Paul Vincent, 2014. "Patterning and growth control by membrane-tethered Wingless," Nature, Nature, vol. 505(7482), pages 180-185, January.
  • Handle: RePEc:nat:nature:v:505:y:2014:i:7482:d:10.1038_nature12879
    DOI: 10.1038/nature12879
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12879
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijuan Du & Alex Sohr & Yujia Li & Sougata Roy, 2022. "GPI-anchored FGF directs cytoneme-mediated bidirectional contacts to regulate its tissue-specific dispersion," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Shinya Matsuda & Jonas V. Schaefer & Yusuke Mii & Yutaro Hori & Dimitri Bieli & Masanori Taira & Andreas Plückthun & Markus Affolter, 2021. "Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:505:y:2014:i:7482:d:10.1038_nature12879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.