IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3767-d940590.html
   My bibliography  Save this article

A Novel Bio-Inspired Motion Direction Detection Mechanism in Binary and Grayscale Background

Author

Listed:
  • Yuxiao Hua

    (Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan)

  • Yuki Todo

    (Faculty of Electrical and Computer Engineering, Kanazawa University, Kanazawa-shi 920-1192, Japan)

  • Zheng Tang

    (Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan)

  • Sichen Tao

    (Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan)

  • Bin Li

    (Faculty of Electrical and Computer Engineering, Kanazawa University, Kanazawa-shi 920-1192, Japan)

  • Riku Inoue

    (Faculty of Electrical and Computer Engineering, Kanazawa University, Kanazawa-shi 920-1192, Japan)

Abstract

The visual system plays a vital role in the daily life of humans, as more than 90 percent of the external information received by the human brain throughout the day comes from the visual system. However, how the human brain processes the received visual information remains a mystery. The information received from the external through the visual system can be divided into three main categories, namely, shape features, color features, and motion features. Of these, motion features are considered the key to deciphering the secrets of the visual system due to their independence and importance. In this paper, we propose a novel bio-inspired motion direction detection mechanism using direction-selective ganglion cells to explore the mystery of motion information extraction and analysis. The mechanism proposed in this paper is divided into two parts: local motion direction detection neurons and global motion direction detection neurons; the former is used to extract motion direction information from the local area, while the latter infers global motion direction from the local motion direction information. This mechanism is more consistent with the biological perception of the human natural visual system than the previously proposed model and has a higher biological plausibility and greater versatility. It is worth mentioning that we have overcome the problem in which the previous motion direction detection model could only be applied in the binary background by introducing the horizontal cells. Through the association formed by horizontal cells and bipolar cells, this model can be applied to recognizing problems of motion direction detection on a grayscale background. To further validate the effectiveness of the proposed model, a series of experiments with objects of different sizes, shapes, and positions are conducted by computer simulation. According to the simulation results, this model has been proven to have high accuracy rates regardless of objects’ sizes, shapes, and positions in all experiments. Furthermore, the proposed model is verified to own more stable accuracy rates and stronger noise immunity by comparing it with the recognized superior classical convolutional neural network in a background of different percentage noise.

Suggested Citation

  • Yuxiao Hua & Yuki Todo & Zheng Tang & Sichen Tao & Bin Li & Riku Inoue, 2022. "A Novel Bio-Inspired Motion Direction Detection Mechanism in Binary and Grayscale Background," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3767-:d:940590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Euler & Peter B. Detwiler & Winfried Denk, 2002. "Directionally selective calcium signals in dendrites of starburst amacrine cells," Nature, Nature, vol. 418(6900), pages 845-852, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yeon Jin Kim & Beth B. Peterson & Joanna D. Crook & Hannah R. Joo & Jiajia Wu & Christian Puller & Farrel R. Robinson & Paul D. Gamlin & King-Wai Yau & Felix Viana & John B. Troy & Robert G. Smith & O, 2022. "Origins of direction selectivity in the primate retina," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Tobias Clark & Vera Hapiak & Mitchell Oakes & Holly Mills & Richard Komuniecki, 2018. "Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
    6. Xiliang Zhang & Sichen Tao & Zheng Tang & Shuxin Zheng & Yoki Todo, 2023. "The Mechanism of Orientation Detection Based on Artificial Visual System for Greyscale Images," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    7. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Sichen Tao & Yuki Todo & Zheng Tang & Bin Li & Zhiming Zhang & Riku Inoue, 2022. "A Novel Artificial Visual System for Motion Direction Detection in Grayscale Images," Mathematics, MDPI, vol. 10(16), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3767-:d:940590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.