IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v572y2019i7769d10.1038_s41586-019-1426-6.html
   My bibliography  Save this article

Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling

Author

Listed:
  • Jiao Wu

    (School of Basic Medicine, Air Force Medical University
    Memorial Sloan-Kettering Cancer Center)

  • Alexander M. Minikes

    (Memorial Sloan-Kettering Cancer Center
    Weill Cornell Graduate School of Medical Sciences)

  • Minghui Gao

    (Memorial Sloan-Kettering Cancer Center
    School of Life Science and Technology, Harbin Institute of Technology)

  • Huijie Bian

    (School of Basic Medicine, Air Force Medical University)

  • Yong Li

    (School of Basic Medicine, Air Force Medical University)

  • Brent R. Stockwell

    (Columbia University)

  • Zhi-Nan Chen

    (School of Basic Medicine, Air Force Medical University)

  • Xuejun Jiang

    (Memorial Sloan-Kettering Cancer Center)

Abstract

Ferroptosis, a cell death process driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated in diseases such as ischaemic organ damage and cancer1,2. The enzyme glutathione peroxidase 4 (GPX4) is a central regulator of ferroptosis, and protects cells by neutralizing lipid peroxides, which are by-products of cellular metabolism. The direct inhibition of GPX4, or indirect inhibition by depletion of its substrate glutathione or the building blocks of glutathione (such as cysteine), can trigger ferroptosis3. Ferroptosis contributes to the antitumour function of several tumour suppressors such as p53, BAP1 and fumarase4–7. Counterintuitively, mesenchymal cancer cells—which are prone to metastasis, and often resistant to various treatments—are highly susceptible to ferroptosis8,9. Here we show that ferroptosis can be regulated non-cell-autonomously by cadherin-mediated intercellular interactions. In epithelial cells, such interactions mediated by E-cadherin suppress ferroptosis by activating the intracellular NF2 (also known as merlin) and Hippo signalling pathway. Antagonizing this signalling axis allows the proto-oncogenic transcriptional co-activator YAP to promote ferroptosis by upregulating several ferroptosis modulators, including ACSL4 and TFRC. This finding provides mechanistic insights into the observations that cancer cells with mesenchymal or metastatic property are highly sensitive to ferroptosis8. Notably, a similar mechanism also modulates ferroptosis in some non-epithelial cells. Finally, genetic inactivation of the tumour suppressor NF2, a frequent tumorigenic event in mesothelioma10,11, rendered cancer cells more sensitive to ferroptosis in an orthotopic mouse model of malignant mesothelioma. Our results demonstrate the role of intercellular interactions and intracellular NF2–YAP signalling in dictating ferroptotic death, and also suggest that malignant mutations in NF2–YAP signalling could predict the responsiveness of cancer cells to future ferroptosis-inducing therapies.

Suggested Citation

  • Jiao Wu & Alexander M. Minikes & Minghui Gao & Huijie Bian & Yong Li & Brent R. Stockwell & Zhi-Nan Chen & Xuejun Jiang, 2019. "Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling," Nature, Nature, vol. 572(7769), pages 402-406, August.
  • Handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1426-6
    DOI: 10.1038/s41586-019-1426-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1426-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1426-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feixia Wang & Yifeng Liu & Feida Ni & Jiani Jin & Yiqing Wu & Yun Huang & Xiaohang Ye & Xilin Shen & Yue Ying & Jianhua Chen & Ruixue Chen & Yanye Zhang & Xiao Sun & Siwen Wang & Xiao Xu & Chuan Chen , 2022. "BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Hui Yang & Qingqing Li & Xingxing Chen & Mingzhe Weng & Yakai Huang & Qiwen Chen & Xiaocen Liu & Haoyu Huang & Yanhuizhi Feng & Hanyu Zhou & Mengying Zhang & Weiya Pei & Xueqin Li & Qingsheng Fu & Lia, 2024. "Targeting SOX13 inhibits assembly of respiratory chain supercomplexes to overcome ferroptosis resistance in gastric cancer," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Xin-yu He & Xiao Fan & Lei Qu & Xiang Wang & Li Jiang & Ling-jie Sang & Cheng-yu Shi & Siyi Lin & Jie-cheng Yang & Zuo-zhen Yang & Kai Lei & Jun-hong Li & Huai-qiang Ju & Qingfeng Yan & Jian Liu & Fud, 2023. "LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Athena Kyrkou & Robert Valla & Yao Zhang & Giulia Ambrosi & Stephanie Laier & Karin Müller-Decker & Michael Boutros & Aurelio A. Teleman, 2024. "G6PD and ACSL3 are synthetic lethal partners of NF2 in Schwann cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1426-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.