IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47105-x.html
   My bibliography  Save this article

A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications

Author

Listed:
  • Junhui Hu

    (Fudan University)

  • Zeyuan Guo

    (Harbin Institute of Technology)

  • Jianyang Shi

    (Fudan University)

  • Xiong Jiang

    (Harbin Institute of Technology)

  • Qinmiao Chen

    (Harbin Institute of Technology)

  • Hui Chen

    (Peng Cheng Laboratory)

  • Zhixue He

    (Peng Cheng Laboratory)

  • Qinghai Song

    (Harbin Institute of Technology
    Peng Cheng Laboratory)

  • Shumin Xiao

    (Harbin Institute of Technology
    Peng Cheng Laboratory)

  • Shaohua Yu

    (Fudan University
    Peng Cheng Laboratory)

  • Nan Chi

    (Fudan University
    Peng Cheng Laboratory)

  • Chao Shen

    (Fudan University
    Peng Cheng Laboratory)

Abstract

Due to its unique intensity distribution, self-acceleration, and beam self-healing properties, Airy beam holds great potential for optical wireless communications in challenging channels, such as underwater environments. As a vital part of 6G wireless network, the Internet of Underwater Things requires high-stability, low-latency, and high-capacity underwater wireless optical communication (UWOC). Currently, the primary challenge of UWOC lies in the prevalent time-varying and complex channel characteristics. Conventional blue Gaussian beam-based systems face difficulties in underwater randomly perturbed links. In this work, we report a full-color circular auto-focusing Airy beams metasurface transmitter for reliable, large-capacity and long-distance UWOC links. The metasurface is designed to exhibits high polarization conversion efficiency over a wide band (440-640 nm), enabling an increased data transmission rate of 91% and reliable 4 K video transmission in wavelength division multiplexing (WDM) based UWOC data link. The successful application of this metasurface in challenging UWOC links establishes a foundation for underwater interconnection scenarios in 6G communication.

Suggested Citation

  • Junhui Hu & Zeyuan Guo & Jianyang Shi & Xiong Jiang & Qinmiao Chen & Hui Chen & Zhixue He & Qinghai Song & Shumin Xiao & Shaohua Yu & Nan Chi & Chao Shen, 2024. "A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47105-x
    DOI: 10.1038/s41467-024-47105-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47105-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47105-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingjie Ni & Alexander V. Kildishev & Vladimir M. Shalaev, 2013. "Metasurface holograms for visible light," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    2. Wenhong Yang & Shumin Xiao & Qinghai Song & Yilin Liu & Yunkai Wu & Shuai Wang & Jie Yu & Jiecai Han & Din-Ping Tsai, 2020. "All-dielectric metasurface for high-performance structural color," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jiao Geng & Liye Xu & Wei Yan & Liping Shi & Min Qiu, 2023. "High-speed laser writing of structural colors for full-color inkless printing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Qingbin Fan & Weizhu Xu & Xuemei Hu & Wenqi Zhu & Tao Yue & Cheng Zhang & Feng Yan & Lu Chen & Henri J. Lezec & Yanqing Lu & Amit Agrawal & Ting Xu, 2022. "Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Xiujuan Zou & Youming Zhang & Ruoyu Lin & Guangxing Gong & Shuming Wang & Shining Zhu & Zhenlin Wang, 2022. "Pixel-level Bayer-type colour router based on metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Arrigo Calzolari & Corey Oses & Cormac Toher & Marco Esters & Xiomara Campilongo & Sergei P. Stepanoff & Douglas E. Wolfe & Stefano Curtarolo, 2022. "Plasmonic high-entropy carbides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jongsun Yoon & Chunghwan Jung & Jaekyung Kim & Junsuk Rho & Hyomin Lee, 2024. "Chemically and geometrically programmable photoreactive polymers for transformational humidity-sensitive full-color devices," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Zhixiang Fan & Chao Qian & Yuetian Jia & Yiming Feng & Haoliang Qian & Er-Ping Li & Romain Fleury & Hongsheng Chen, 2024. "Holographic multiplexing metasurface with twisted diffractive neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Weihan Li & Qian Ma & Che Liu & Yunfeng Zhang & Xianning Wu & Jiawei Wang & Shizhao Gao & Tianshuo Qiu & Tonghao Liu & Qiang Xiao & Jiaxuan Wei & Ting Ting Gu & Zhize Zhou & Fashuai Li & Qiang Cheng &, 2023. "Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47105-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.