IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24493-y.html
   My bibliography  Save this article

Engineering phase and polarization singularity sheets

Author

Listed:
  • Soon Wei Daniel Lim

    (Harvard University)

  • Joon-Suh Park

    (Harvard University
    Korea Institute of Science and Technology)

  • Maryna L. Meretska

    (Harvard University)

  • Ahmed H. Dorrah

    (Harvard University)

  • Federico Capasso

    (Harvard University)

Abstract

Optical phase singularities are zeros of a scalar light field. The most systematically studied class of singular fields is vortices: beams with helical wavefronts and a linear (1D) singularity along the optical axis. Beyond these common and stable 1D topologies, we show that a broader family of zero-dimensional (point) and two-dimensional (sheet) singularities can be engineered. We realize sheet singularities by maximizing the field phase gradient at the desired positions. These sheets, owning to their precise alignment requirements, would otherwise only be observed in rare scenarios with high symmetry. Furthermore, by applying an analogous procedure to the full vectorial electric field, we can engineer paraxial transverse polarization singularity sheets. As validation, we experimentally realize phase and polarization singularity sheets with heart-shaped cross-sections using metasurfaces. Singularity engineering of the dark enables new degrees of freedom for light-matter interaction and can inspire similar field topologies beyond optics, from electron beams to acoustics.

Suggested Citation

  • Soon Wei Daniel Lim & Joon-Suh Park & Maryna L. Meretska & Ahmed H. Dorrah & Federico Capasso, 2021. "Engineering phase and polarization singularity sheets," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24493-y
    DOI: 10.1038/s41467-021-24493-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24493-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24493-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Soon Wei Daniel Lim & Joon-Suh Park & Dmitry Kazakov & Christina M. Spägele & Ahmed H. Dorrah & Maryna L. Meretska & Federico Capasso, 2023. "Point singularity array with metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24493-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.