Active and conductive layer stacked superlattices for highly selective CO2 electroreduction
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-29699-2
Download full text from publisher
References listed on IDEAS
- Dexin Yang & Qinggong Zhu & Chunjun Chen & Huizhen Liu & Zhimin Liu & Zhijuan Zhao & Xiaoyu Zhang & Shoujie Liu & Buxing Han, 2019. "Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Na Han & Yu Wang & Hui Yang & Jun Deng & Jinghua Wu & Yafei Li & Yanguang Li, 2018. "Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Qiufang Gong & Pan Ding & Mingquan Xu & Xiaorong Zhu & Maoyu Wang & Jun Deng & Qing Ma & Na Han & Yong Zhu & Jun Lu & Zhenxing Feng & Yafei Li & Wu Zhou & Yanguang Li, 2019. "Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- James Gallagher, 2019. "A framework for forming formate," Nature Energy, Nature, vol. 4(1), pages 7-7, January.
- Lei Fan & Chuan Xia & Peng Zhu & Yingying Lu & Haotian Wang, 2020. "Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Yuvraj Y. Birdja & Elena Pérez-Gallent & Marta C. Figueiredo & Adrien J. Göttle & Federico Calle-Vallejo & Marc T. M. Koper, 2019. "Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels," Nature Energy, Nature, vol. 4(9), pages 732-745, September.
- Shan Gao & Yue Lin & Xingchen Jiao & Yongfu Sun & Qiquan Luo & Wenhua Zhang & Dianqi Li & Jinlong Yang & Yi Xie, 2016. "Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel," Nature, Nature, vol. 529(7584), pages 68-71, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Subhabrata Mukhopadhyay & Muhammad Saad Naeem & G. Shiva Shanker & Arnab Ghatak & Alagar R. Kottaichamy & Ran Shimoni & Liat Avram & Itamar Liberman & Rotem Balilty & Raya Ifraemov & Illya Rozenberg &, 2024. "Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Bilawal Khan & M. Bilal Faheem & Karthik Peramaiah & Jinlan Nie & Hao Huang & Zhongxiao Li & Chen Liu & Kuo-Wei Huang & Jr-Hau He, 2024. "Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- An, Xiaowei & Li, Shasha & Hao, Xiaoqiong & Xie, Zhengkun & Du, Xiao & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2021. "Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Zhiwen Jiang & Carine Clavaguéra & Changjiang Hu & Sergey A. Denisov & Shuning Shen & Feng Hu & Jun Ma & Mehran Mostafavi, 2023. "Direct time-resolved observation of surface-bound carbon dioxide radical anions on metallic nanocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Chunjun Chen & Xupeng Yan & Yahui Wu & Xiudong Zhang & Shoujie Liu & Fanyu Zhang & Xiaofu Sun & Qinggong Zhu & Lirong Zheng & Jing Zhang & Xueqing Xing & Zhonghua Wu & Buxing Han, 2023. "Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Leiming Hu & Jacob A. Wrubel & Carlos M. Baez-Cotto & Fry Intia & Jae Hyung Park & Arthur Jeremy Kropf & Nancy Kariuki & Zhe Huang & Ahmed Farghaly & Lynda Amichi & Prantik Saha & Ling Tao & David A. , 2023. "A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Hongfei Wang & Zhipeng Yu & Jie Zhou & Chengming Li & Ananthanarasimhan Jayanarasimhan & Xiqiang Zhao & Hao Zhang, 2023. "A Scientometric Review of CO 2 Electroreduction Research from 2005 to 2022," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Cláudio J. R. Frazão & Nils Wagner & Kenny Rabe & Thomas Walther, 2023. "Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
- Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29699-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.