IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17403-1.html
   My bibliography  Save this article

Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor

Author

Listed:
  • Lei Fan

    (Rice University
    Zhejiang University)

  • Chuan Xia

    (Rice University
    Rice University)

  • Peng Zhu

    (Rice University)

  • Yingying Lu

    (Zhejiang University)

  • Haotian Wang

    (Rice University
    Azrieli Global Scholar, Canadian Institute for Advanced Research (CIFAR))

Abstract

Electrochemical CO2 reduction reaction (CO2RR) to liquid fuels is currently challenged by low product concentrations, as well as their mixture with traditional liquid electrolytes, such as KHCO3 solution. Here we report an all-solid-state electrochemical CO2RR system for continuous generation of high-purity and high-concentration formic acid vapors and solutions. The cathode and anode were separated by a porous solid electrolyte (PSE) layer, where electrochemically generated formate and proton were recombined to form molecular formic acid. The generated formic acid can be efficiently removed in the form of vapors via inert gas stream flowing through the PSE layer. Coupling with a high activity (formate partial current densities ~450 mA cm−2), selectivity (maximal Faradaic efficiency ~97%), and stability (100 hours) grain boundary-enriched bismuth catalyst, we demonstrated ultra-high concentrations of pure formic acid solutions (up to nearly 100 wt.%) condensed from generated vapors via flexible tuning of the carrier gas stream.

Suggested Citation

  • Lei Fan & Chuan Xia & Peng Zhu & Yingying Lu & Haotian Wang, 2020. "Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17403-1
    DOI: 10.1038/s41467-020-17403-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17403-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17403-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohan Yu & Yuting Xu & Le Li & Mingzhe Zhang & Wenhao Qin & Fanglin Che & Miao Zhong, 2024. "Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Junyuan Duan & Tianyang Liu & Yinghe Zhao & Ruoou Yang & Yang Zhao & Wenbin Wang & Youwen Liu & Huiqiao Li & Yafei Li & Tianyou Zhai, 2022. "Active and conductive layer stacked superlattices for highly selective CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Leiming Hu & Jacob A. Wrubel & Carlos M. Baez-Cotto & Fry Intia & Jae Hyung Park & Arthur Jeremy Kropf & Nancy Kariuki & Zhe Huang & Ahmed Farghaly & Lynda Amichi & Prantik Saha & Ling Tao & David A. , 2023. "A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Bilawal Khan & M. Bilal Faheem & Karthik Peramaiah & Jinlan Nie & Hao Huang & Zhongxiao Li & Chen Liu & Kuo-Wei Huang & Jr-Hau He, 2024. "Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Zhenyu Jin & Yingqing Guo & Chaozhi Qiu, 2022. "Electro-Conversion of Carbon Dioxide to Valuable Chemicals in a Membrane Electrode Assembly," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    10. An, Xiaowei & Li, Shasha & Hao, Xiaoqiong & Xie, Zhengkun & Du, Xiao & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2021. "Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Juncai Dong & Yangyang Liu & Jiajing Pei & Haijing Li & Shufang Ji & Lei Shi & Yaning Zhang & Can Li & Cheng Tang & Jiangwen Liao & Shiqing Xu & Huabin Zhang & Qi Li & Shenlong Zhao, 2023. "Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17403-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.