IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47498-9.html
   My bibliography  Save this article

Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction

Author

Listed:
  • Subhabrata Mukhopadhyay

    (Ben-Gurion University of the Negev)

  • Muhammad Saad Naeem

    (The Barcelona Institute of Science and Technology (BIST)
    Pl. Imperial Tarraco 1)

  • G. Shiva Shanker

    (Ben-Gurion University of the Negev)

  • Arnab Ghatak

    (Ben-Gurion University of the Negev)

  • Alagar R. Kottaichamy

    (Ben-Gurion University of the Negev)

  • Ran Shimoni

    (Ben-Gurion University of the Negev)

  • Liat Avram

    (Department of Chemical Research Support Weizmann Institute of Science)

  • Itamar Liberman

    (Ben-Gurion University of the Negev)

  • Rotem Balilty

    (Ben-Gurion University of the Negev)

  • Raya Ifraemov

    (Ben-Gurion University of the Negev)

  • Illya Rozenberg

    (Ben-Gurion University of the Negev)

  • Menny Shalom

    (Ben-Gurion University of the Negev)

  • Núria López

    (The Barcelona Institute of Science and Technology (BIST))

  • Idan Hod

    (Ben-Gurion University of the Negev)

Abstract

Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.

Suggested Citation

  • Subhabrata Mukhopadhyay & Muhammad Saad Naeem & G. Shiva Shanker & Arnab Ghatak & Alagar R. Kottaichamy & Ran Shimoni & Liat Avram & Itamar Liberman & Rotem Balilty & Raya Ifraemov & Illya Rozenberg &, 2024. "Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47498-9
    DOI: 10.1038/s41467-024-47498-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47498-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47498-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Na Han & Yu Wang & Hui Yang & Jun Deng & Jinghua Wu & Yafei Li & Yanguang Li, 2018. "Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Kyung-Lyul Bae & Jinmo Kim & Chan Kyu Lim & Ki Min Nam & Hyunjoon Song, 2017. "Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    3. Qiufang Gong & Pan Ding & Mingquan Xu & Xiaorong Zhu & Maoyu Wang & Jun Deng & Qing Ma & Na Han & Yong Zhu & Jun Lu & Zhenxing Feng & Yafei Li & Wu Zhou & Yanguang Li, 2019. "Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Shenlong Zhao & Yun Wang & Juncai Dong & Chun-Ting He & Huajie Yin & Pengfei An & Kun Zhao & Xiaofei Zhang & Chao Gao & Lijuan Zhang & Jiawei Lv & Jinxin Wang & Jianqi Zhang & Abdul Muqsit Khattak & N, 2016. "Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution," Nature Energy, Nature, vol. 1(12), pages 1-10, December.
    5. Jing Shen & Ruud Kortlever & Recep Kas & Yuvraj Y. Birdja & Oscar Diaz-Morales & Youngkook Kwon & Isis Ledezma-Yanez & Klaas Jan P. Schouten & Guido Mul & Marc T. M. Koper, 2015. "Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. Idan Hod & Pravas Deria & Wojciech Bury & Joseph E. Mondloch & Chung-Wei Kung & Monica So & Matthew D. Sampson & Aaron W. Peters & Cliff P. Kubiak & Omar K. Farha & Joseph T. Hupp, 2015. "A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    7. Fa Yang & Ahmed O. Elnabawy & Roberto Schimmenti & Ping Song & Jiawei Wang & Zhangquan Peng & Shuang Yao & Ruiping Deng & Shuyan Song & Yue Lin & Manos Mavrikakis & Weilin Xu, 2020. "Bismuthene for highly efficient carbon dioxide electroreduction reaction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Young-Jin Ko & Jun-Yong Kim & Woong Hee Lee & Min Gyu Kim & Tae-Yeon Seong & Jongkil Park & YeonJoo Jeong & Byoung Koun Min & Wook-Seong Lee & Dong Ki Lee & Hyung-Suk Oh, 2022. "Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yuvraj Y. Birdja & Elena Pérez-Gallent & Marta C. Figueiredo & Adrien J. Göttle & Federico Calle-Vallejo & Marc T. M. Koper, 2019. "Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels," Nature Energy, Nature, vol. 4(9), pages 732-745, September.
    10. Mariana C. O. Monteiro & Matthew F. Philips & Klaas Jan P. Schouten & Marc T. M. Koper, 2021. "Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Junyuan Duan & Tianyang Liu & Yinghe Zhao & Ruoou Yang & Yang Zhao & Wenbin Wang & Youwen Liu & Huiqiao Li & Yafei Li & Tianyou Zhai, 2022. "Active and conductive layer stacked superlattices for highly selective CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Bohua Ren & Guobin Wen & Rui Gao & Dan Luo & Zhen Zhang & Weibin Qiu & Qianyi Ma & Xin Wang & Yi Cui & Luis Ricardez–Sandoval & Aiping Yu & Zhongwei Chen, 2022. "Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Pengtang Wang & Hao Yang & Cheng Tang & Yu Wu & Yao Zheng & Tao Cheng & Kenneth Davey & Xiaoqing Huang & Shi-Zhang Qiao, 2022. "Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    12. Zilong Wu & Xiangyu Liu & Haijing Li & Zhiyi Sun & Maosheng Cao & Zezhou Li & Chaohe Fang & Jihan Zhou & Chuanbao Cao & Juncai Dong & Shenlong Zhao & Zhuo Chen, 2023. "A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Young-Jin Ko & Jun-Yong Kim & Woong Hee Lee & Min Gyu Kim & Tae-Yeon Seong & Jongkil Park & YeonJoo Jeong & Byoung Koun Min & Wook-Seong Lee & Dong Ki Lee & Hyung-Suk Oh, 2022. "Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Yifeng Hou & Fengyan Wang & Chichu Qin & Shining Wu & Mengyang Cao & Pengkun Yang & Lu Huang & Yingpeng Wu, 2022. "A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Wenjin Guo & Guangfang Li & Chengbo Bai & Qiong Liu & Fengxi Chen & Rong Chen, 2024. "General synthesis and atomic arrangement identification of ordered Bi–Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47498-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.