IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28873-w.html
   My bibliography  Save this article

Texture is encoded in precise temporal spiking patterns in primate somatosensory cortex

Author

Listed:
  • Katie H. Long

    (University of Chicago
    University of Chicago)

  • Justin D. Lieber

    (New York University)

  • Sliman J. Bensmaia

    (University of Chicago
    University of Chicago
    University of Chicago)

Abstract

Humans are exquisitely sensitive to the microstructure and material properties of surfaces. In the peripheral nerves, texture information is conveyed via two mechanisms: coarse textural features are encoded in spatial patterns of activation that reflect their spatial layout, and fine features are encoded in highly repeatable, texture-specific temporal spiking patterns evoked as the skin moves across the surface. Here, we examined whether this temporal code is preserved in the responses of neurons in somatosensory cortex. We scanned a diverse set of everyday textures across the fingertip of awake macaques while recording the responses evoked in individual cortical neurons. We found that temporal spiking patterns are highly repeatable across multiple presentations of the same texture, with millisecond precision. As a result, texture identity can be reliably decoded from the temporal patterns themselves, even after information carried in the spike rates is eliminated. However, the combination of rate and timing is more informative than either code in isolation. The temporal precision of the texture response is heterogenous across cortical neurons and depends on the submodality composition of their input and on their location along the somatosensory neuraxis. Furthermore, temporal spiking patterns in cortex dilate and contract with decreases and increases in scanning speed, respectively, and this systematic relationship between speed and patterning may contribute to the observed perceptual invariance to speed. Finally, we find that the quality of a texture percept can be better predicted when these temporal patterns are taken into consideration. We conclude that high-precision spike timing complements rate-based signals to encode texture in somatosensory cortex.

Suggested Citation

  • Katie H. Long & Justin D. Lieber & Sliman J. Bensmaia, 2022. "Texture is encoded in precise temporal spiking patterns in primate somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28873-w
    DOI: 10.1038/s41467-022-28873-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28873-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28873-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael A Harvey & Hannes P Saal & John F Dammann III & Sliman J Bensmaia, 2013. "Multiplexing Stimulus Information through Rate and Temporal Codes in Primate Somatosensory Cortex," PLOS Biology, Public Library of Science, vol. 11(5), pages 1-11, May.
    2. Michael Wehr & Anthony M. Zador, 2003. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex," Nature, Nature, vol. 426(6965), pages 442-446, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margot C Bjoring & C Daniel Meliza, 2019. "A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-20, January.
    2. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    3. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    4. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Sean T Kelly & Jens Kremkow & Jianzhong Jin & Yushi Wang & Qi Wang & Jose-Manuel Alonso & Garrett B Stanley, 2014. "The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    6. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    9. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    10. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    11. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    12. Georgios Spyropoulos & Matteo Saponati & Jarrod Robert Dowdall & Marieke Louise Schölvinck & Conrado Arturo Bosman & Bruss Lima & Alina Peter & Irene Onorato & Johanna Klon-Lipok & Rasmus Roese & Serg, 2022. "Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Deng, Liyuan & Huo, Siyu & Chen, Aihua & Liu, Zonghua, 2024. "Coupling resonance of signal responses induced by heterogeneously mixed positive and negative couplings in cognitive subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28873-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.