IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003418.html
   My bibliography  Save this article

The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity

Author

Listed:
  • Sean T Kelly
  • Jens Kremkow
  • Jianzhong Jin
  • Yushi Wang
  • Qi Wang
  • Jose-Manuel Alonso
  • Garrett B Stanley

Abstract

In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization.Author Summary: While the visual system is selective for a wide range of different inputs, orientation selectivity has been considered the preeminent property of the mammalian visual cortex. Existing models of this selectivity rely on varying relative importance of feedforward thalamic input and intracortical influence. Recently, we have shown that pairwise timing relationships between single thalamic neurons can be predictive of a high degree of orientation selectivity. Here we have constructed a computational model that predicts cortical orientation tuning from thalamic populations. We show that this arrangement, relying on precise timing differences between thalamic responses, accurately predicts tuning properties as well as demonstrates that certain timing relationships are optimal for transmitting information about the stimulus to cortex.

Suggested Citation

  • Sean T Kelly & Jens Kremkow & Jianzhong Jin & Yushi Wang & Qi Wang & Jose-Manuel Alonso & Garrett B Stanley, 2014. "The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
  • Handle: RePEc:plo:pcbi00:1003418
    DOI: 10.1371/journal.pcbi.1003418
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003418
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003418&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo Carandini, 2004. "Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex," PLOS Biology, Public Library of Science, vol. 2(9), pages 1-1, August.
    2. Michael Wehr & Anthony M. Zador, 2003. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex," Nature, Nature, vol. 426(6965), pages 442-446, November.
    3. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    4. Daniel A. Butts & Chong Weng & Jianzhong Jin & Chun-I Yeh & Nicholas A. Lesica & Jose-Manuel Alonso & Garrett B. Stanley, 2007. "Temporal precision in the neural code and the timescales of natural vision," Nature, Nature, vol. 449(7158), pages 92-95, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovidiu F Jurjuţ & Danko Nikolić & Wolf Singer & Shan Yu & Martha N Havenith & Raul C Mureşan, 2011. "Timescales of Multineuronal Activity Patterns Reflect Temporal Structure of Visual Stimuli," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-15, February.
    2. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    3. Margot C Bjoring & C Daniel Meliza, 2019. "A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-20, January.
    4. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    5. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    6. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    7. Lin, Lihui, 2021. "Does the procedure matter?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 90(C).
    8. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    10. Bryce Allen Bagley & Blake Bordelon & Benjamin Moseley & Ralf Wessel, 2020. "Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-25, February.
    11. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    12. Medina, José M. & Díaz, José A., 2016. "Extreme reaction times determine fluctuation scaling in human color vision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 125-132.
    13. Zane N Aldworth & Alexander G Dimitrov & Graham I Cummins & Tomáš Gedeon & John P Miller, 2011. "Temporal Encoding in a Nervous System," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-19, May.
    14. Panagiotis Fotiadis & Matthew Cieslak & Xiaosong He & Lorenzo Caciagli & Mathieu Ouellet & Theodore D. Satterthwaite & Russell T. Shinohara & Dani S. Bassett, 2023. "Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Katie H. Long & Justin D. Lieber & Sliman J. Bensmaia, 2022. "Texture is encoded in precise temporal spiking patterns in primate somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    18. Cheng Ly & Brent Doiron, 2009. "Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-12, April.
    19. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    20. Felipe Gerhard & Moritz Deger & Wilson Truccolo, 2017. "On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-31, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.