IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13986.html
   My bibliography  Save this article

Observation of the topological soliton state in the Su–Schrieffer–Heeger model

Author

Listed:
  • Eric J. Meier

    (University of Illinois at Urbana-Champaign)

  • Fangzhao Alex An

    (University of Illinois at Urbana-Champaign)

  • Bryce Gadway

    (University of Illinois at Urbana-Champaign)

Abstract

The Su–Schrieffer–Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer trans-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically protected, dispersionless boundary states. Here, using 87Rb atoms in a momentum-space lattice, we realize fully tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation.

Suggested Citation

  • Eric J. Meier & Fangzhao Alex An & Bryce Gadway, 2016. "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13986
    DOI: 10.1038/ncomms13986
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13986
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Wang, Huanyu & Liu, Wuming, 2023. "Broken bulk-boundary correspondence in the non-Hermitian superconductive chain with the identity determinant of transfer matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    5. Sifan You & Cuiju Yu & Yixuan Gao & Xuechao Li & Guyue Peng & Kaifeng Niu & Jiahao Xi & Chaojie Xu & Shixuan Du & Xingxing Li & Jinlong Yang & Lifeng Chi, 2024. "Quantifying the conductivity of a single polyene chain by lifting with an STM tip," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yuqing Li & Huiying Du & Yunfei Wang & Junjun Liang & Liantuan Xiao & Wei Yi & Jie Ma & Suotang Jia, 2023. "Observation of frustrated chiral dynamics in an interacting triangular flux ladder," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.