IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50915-8.html
   My bibliography  Save this article

Quantifying the conductivity of a single polyene chain by lifting with an STM tip

Author

Listed:
  • Sifan You

    (Soochow University)

  • Cuiju Yu

    (University of Science and Technology of China)

  • Yixuan Gao

    (Chinese Academy of Sciences
    University of Science and Technology Beijing)

  • Xuechao Li

    (Soochow University)

  • Guyue Peng

    (Soochow University)

  • Kaifeng Niu

    (Linköping University)

  • Jiahao Xi

    (Soochow University)

  • Chaojie Xu

    (Soochow University)

  • Shixuan Du

    (Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Xingxing Li

    (University of Science and Technology of China)

  • Jinlong Yang

    (University of Science and Technology of China)

  • Lifeng Chi

    (Soochow University)

Abstract

Conjugated polymers are promising candidates for molecular wires in nanoelectronics, with flexibility in mechanics, stability in chemistry and variety in electrical conductivity. Polyene, as a segment of polyacetylene, is a typical conjugated polymer with straightforward structure and wide-range adjustable conductance. To obtain atomic scale understanding of charge transfer in polyene, we have measured the conductance of a single polyene-based molecular chain via lifting it up with scanning tunneling microscopy tip. Different from semiconducting characters in pristine polyene (polyacetylene), high conductance and low decay constant are obtained, along with an electronic state around Fermi level and characteristic vibrational mode. These observed phenomena result from pinned molecular orbital owing to molecule-electrode coupling at the interface, and weakened bond length alternation due to electron-phonon coupling inside single molecular chain. Our findings emphasize the interfacial characteristics in molecular junctions and promising properties of polyene, with single molecular conductance as a vital tool for bringing insights into the design and construction of nanodevices.

Suggested Citation

  • Sifan You & Cuiju Yu & Yixuan Gao & Xuechao Li & Guyue Peng & Kaifeng Niu & Jiahao Xi & Chaojie Xu & Shixuan Du & Xingxing Li & Jinlong Yang & Lifeng Chi, 2024. "Quantifying the conductivity of a single polyene chain by lifting with an STM tip," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50915-8
    DOI: 10.1038/s41467-024-50915-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50915-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50915-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric J. Meier & Fangzhao Alex An & Bryce Gadway, 2016. "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    2. Christophe Nacci & Francisco Ample & David Bleger & Stefan Hecht & Christian Joachim & Leonhard Grill, 2015. "Conductance of a single flexible molecular wire composed of alternating donor and acceptor units," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. P. H. Jacobse & A. Kimouche & T. Gebraad & M. M. Ervasti & J. M. Thijssen & P. Liljeroth & I. Swart, 2017. "Electronic components embedded in a single graphene nanoribbon," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing Li & Huiying Du & Yunfei Wang & Junjun Liang & Liantuan Xiao & Wei Yi & Jie Ma & Suotang Jia, 2023. "Observation of frustrated chiral dynamics in an interacting triangular flux ladder," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Wang, Huanyu & Liu, Wuming, 2023. "Broken bulk-boundary correspondence in the non-Hermitian superconductive chain with the identity determinant of transfer matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    5. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50915-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.