IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34979-y.html
   My bibliography  Save this article

A topological nonlinear parametric amplifier

Author

Listed:
  • Byoung-Uk Sohn

    (Singapore University of Technology and Design)

  • Yue-Xin Huang

    (Singapore University of Technology and Design)

  • Ju Won Choi

    (Singapore University of Technology and Design)

  • George F. R. Chen

    (Singapore University of Technology and Design)

  • Doris K. T. Ng

    (Institute of Microelectronics, A*STAR)

  • Shengyuan A. Yang

    (Singapore University of Technology and Design)

  • Dawn T. H. Tan

    (Singapore University of Technology and Design
    Institute of Microelectronics, A*STAR)

Abstract

Topological boundary states are well localized eigenstates at the boundary between two different bulk topologies. As long as bulk topology is preserved, the topological boundary mode will endure. Here, we report topological nonlinear parametric amplification of light in a dimerized coupled waveguide system based on the Su-Schrieffer-Heeger model with a domain wall. The good linear transmission properties of the topological waveguide arising from the strong localization of light to the topological boundary is demonstrated through successful high-speed transmission of 30 Gb/s non-return-to-zero and 56 Gb/s pulse amplitude 4-level data. The strong localization of a co-propagating pump and probe to the boundary waveguide is harnessed for efficient, low power optical parametric amplification and wavelength conversion. A nonlinear tuning mechanism is shown to induce chiral symmetry breaking in the topological waveguide, demonstrating a pathway in which Kerr nonlinearities may be applied to tune the topological boundary mode and control the transition to bulk states.

Suggested Citation

  • Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34979-y
    DOI: 10.1038/s41467-022-34979-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34979-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34979-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric J. Meier & Fangzhao Alex An & Bryce Gadway, 2016. "Observation of the topological soliton state in the Su–Schrieffer–Heeger model," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    2. Han Zhao & Pei Miao & Mohammad H. Teimourpour & Simon Malzard & Ramy El-Ganainy & Henning Schomerus & Liang Feng, 2018. "Topological hybrid silicon microlasers," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    3. Zheng Wang & Yidong Chong & J. D. Joannopoulos & Marin Soljačić, 2009. "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Nature, vol. 461(7265), pages 772-775, October.
    4. Xin-Tao He & En-Tao Liang & Jia-Jun Yuan & Hao-Yang Qiu & Xiao-Dong Chen & Fu-Li Zhao & Jian-Wen Dong, 2019. "A silicon-on-insulator slab for topological valley transport," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Wen-Jie Chen & Shao-Ji Jiang & Xiao-Dong Chen & Baocheng Zhu & Lei Zhou & Jian-Wen Dong & C. T. Chan, 2014. "Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    6. Mingsen Pan & Han Zhao & Pei Miao & Stefano Longhi & Liang Feng, 2018. "Photonic zero mode in a non-Hermitian photonic lattice," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Sunil Mittal & Elizabeth A. Goldschmidt & Mohammad Hafezi, 2018. "A topological source of quantum light," Nature, Nature, vol. 561(7724), pages 502-506, September.
    8. Mikael C. Rechtsman & Julia M. Zeuner & Yonatan Plotnik & Yaakov Lumer & Daniel Podolsky & Felix Dreisow & Stefan Nolte & Mordechai Segev & Alexander Szameit, 2013. "Photonic Floquet topological insulators," Nature, Nature, vol. 496(7444), pages 196-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Cuicui Lu & Yi-Zhi Sun & Chenyang Wang & Hongyu Zhang & Wen Zhao & Xiaoyong Hu & Meng Xiao & Wei Ding & Yong-Chun Liu & C. T. Chan, 2022. "On-chip nanophotonic topological rainbow," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Xing-Xiang Wang & Zhiwei Guo & Juan Song & Haitao Jiang & Hong Chen & Xiao Hu, 2023. "Unique Huygens-Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Ivanov, Sergey K. & Kartashov, Yaroslav V., 2024. "Floquet valley Hall edge solitons," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    17. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yuze Hu & Mingyu Tong & Tian Jiang & Jian-Hua Jiang & Hongsheng Chen & Yihao Yang, 2024. "Observation of two-dimensional time-reversal broken non-Abelian topological states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Shengjie Wu & Wange Song & Jiacheng Sun & Jian Li & Zhiyuan Lin & Xuanyu Liu & Shining Zhu & Tao Li, 2024. "Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34979-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.